Skip to main content

Cycling’s technological transformation: Making cycling faster, easier and safer

TMT Predictions 2020

Mark Casey

Technological innovations and the spread of bikesharing platforms are making cycling more attractive to millions of commuters. Cycling’s upswing in popularity could mean cleaner air, less traffic and healthier people for cities worldwide.
 

DRIVERS, check your rearview mirrors: More and more cyclists are taking to the roads and they’re not going away anytime soon. We predict that tens of billions of additional bicycle trips per year will take place in 2022 over 2019 levels. This increase in cycling will double the number of regular bicycle users in many major cities around the world where cycling to work is still uncommon. (In the United States and Canada, for instance, only about 1 per cent of the workforce commutes by bike today).1 In total, we predict a 1 percentage point rise in the proportion of people who bike to work during the three years from 2019 to 2022.

The progression from 1 per cent to 2 per cent may seem unimpressive at first glance—but given the low bases, the difference will be marked. Tens of billions of additional bicycle rides per year means fewer car trips and lower emissions, with spillover benefits for traffic congestion and urban air quality.

Underlying this growth in cycling is an array of diverse technological innovations, including predictive analytics, product and application design, wireless connectivity, digital urban planning tools, 3D-printed parts and electrification. These innovations—which, for the most part, are being developed separately by a disparate range of companies—are making cycling safer, faster, more convenient and easier to track and measure. This, in turn, makes it a more attractive option for first-mile, last-mile and overall travel, furthering its rising popularity.

Growth in urban bicycle use can drive profound societal changes: reductions in traffic and pollution, less-crowded public transit systems and improvements in public health. The need for more effective transportation is particularly acute in cities. Every week, an estimated 3 million people move into cities around the world.2 By 2050, 2.5 billion more people are expected to be living in cities than today.3 Moving all these people around may strain capacity on existing transport options. Bikes can pick up some of the slack for shorter journeys: Nearly three in five private car trips in the United States in 2017 were shorter than 10 kilometres and just under half were shorter than five kilometres.4

Even today, bicycle trips number in the billions each year

While we anticipate bicycling to become more widespread in the future, it is far from rare even today. There are currently six cities in the world where bicycling occupies more than 10 per cent of all journeys. True, the top three are relatively small, but the next three have a combined population of 45 million. Add in Beijing, Bangalore, Shenzhen, Buenos Aires, and Delhi, and we are looking at several billion bicycle trips annually, even though bicycling represents less than 10 per cent of journeys in each of the latter cities.

Show more

Electrification: My other car is an e-bike

Of the slew of the aforementioned bicycle-related technologies, the development and spread of e-bikes, which use batteries to assist pedalling, stands out for its potential to boost cycling’s growth.

Electrifying a bike is not a new idea: The first patent for an electrically powered bicycle dates from 1895.5 The concept, however, did not catch on like wildfire. Even earlier in this century, e-bikes remained relatively rare in most of the world. Between 2006 and 2012, for example, e-bikes represented less than 1 per cent of all annual bicycle sales (standard and electric) in the United States.6 The exception was China, where 37 million e-bikes were manufactured and 32 million sold in 2013.7 By contrast, only 1.8 million e-bikes were sold in all of Europe that same year, while Japan recorded only 440,000 and the United States a measly 185,000.8

Now, thanks largely to recent improvements in lithium-ion battery (LIB) technology, pricing and power, the e-bike market is seeing a surge in interest, particularly for high-end models. Between 2020 and 2023, more than 130 million e-bikes (using all battery technologies) are expected to be sold,9 and in 2023, e-bike sales are expected to top 40 million units worldwide,10 generating about US$20 billion in income.11 To put these numbers into context, only 12 million electric vehicles—that is, automobiles and trucks—are expected to sell in 2025; at the end of 2018, just 5.1 million electric vehicles were in circulation.12

Advances in LIBs are a strong sales driver. Although more than 80 per cent of the e-bikes sold each year were using heavy lead-acid batteries as recently as 2016, the falling price of much lighter LIBs has shifted the market. Over the entire four-year forecast period between 2020 and 2023, we expect about two-fifths of all e-bikes sold globally to feature LIBs, with the proportion of LIB-powered e-bikes starting out at about 25 per cent in 2020 and rising to more than 60 per cent in 2023. LIBs are now becoming available in variants for different applications, with models specifically designed for commuting (for fast acceleration at a low pedalling speed), cargo (for heavy loads) and mountain bikes (ideal for fast sprints and steep hills) now available.13

Bike makers and sellers are already seeing e-bike sales pick up the pace. One global bicycle manufacturer’s e-bike H1 revenues for 2019 were up by more than 40 per cent year over year.14 In Germany, e-bike sales in 2018 rose by 36 per cent to nearly 1 million units;15 almost a million more were sold in Germany in just the first half of 2019.16 More than half of all adult bikes sold in the Netherlands in 2018 were electric,17 and e-bike sales at speciality stores in the United States surged to more than 400,000 units, a 73 per cent increase.18 Spain recorded a 55 per cent year-on-year increase in e-bike unit sales in 2018, selling 111,297 e-bikes for an average of 2,165 euros each.19

All those sales mean a lot of e-bikes on the streets. By 2023, the total number of e-bikes in circulation around the world—owned by both consumers and organisations—should reach about 300 million, a 50 per cent increase over 2019’s 200 million.20 These 300 million e-bikes will include both privately owned e-bikes and e-bikes available to share.

What’s the appeal of e-bikes? One big plus is that battery assist makes cycling less of a physical effort. This translates into faster speeds; easier acceleration after a stop, such as at a traffic light; and a power boost when going uphill, facing headwinds, carrying heavy loads, or some combination of the above.21 Once a specific speed has been attained, the assist stops. In Europe and China, battery assistance stops at 25 kilometres per hour;22 any faster and the rider must power the bike on their own.

On an e-bike, a cyclist can attain an average speed of about 22 kilometres per hour, about 50 per cent faster than the average 15 kilometres per hour for a standard bike.23 This increased speed could cut journey times by two-thirds. At such speeds, an e-bike might even outpace a car, coach, or underground. Moreover, riding an e-bike requires less effort than a standard bike. An e-bike ride is more akin to a stroll than a sprint, meaning that cycling can be done in a suit rather than spandex. One test found that e-bikers sweat two-thirds less than regular cyclists.24 This matters to commuters: Not having to pack a change of clothing or shower after a ride removes a significant disincentive to cycling.

E-bikes open up cycling to many who might otherwise hesitate. Because the electric engine takes over when energy levels flag, e-bikes can encourage people who feel out of shape to get back in the saddle. According to one survey, 20 per cent of Londoners who don’t cycle say that they are too old or unfit to do so.25 And the effect doesn’t end with out-of-shape able-bodied individuals. Electrification can be a game-changer for the disabled: The motorised elements of an e-bike can be integrated into a wheelchair that can then be ridden in bike lanes or on the road.26 For the disabled, this can make moving around a city far faster than travelling by coach (even with ramps) or rail (assuming station platforms have been adapted and lifts added).

Yet electrifying a bicycle does more than making it easier to pedal. E-bikes can also be secured and unlocked via a smartphone app and the same technology makes it possible to more easily locate an e-bike if lost or stolen. Electrification can also improve safety. Most higher-end e-bikes have very large, bright, battery-powered front and rear LED lights—not as important for daytime pleasure rides, but critical for winter rush-hour commutes, which in the northern hemisphere often occur in dusk or even complete darkness.

Yes, most or all of this can be done on mechanical bikes, too. But … it usually isn’t. Buying these capabilities integrated into an electric bike eliminates hassle for the rider. Consider someone using battery-powered front and rear lights on a standard bike. Nonintegrated lights are easy to steal, so the rider would have to remove them after the morning commute, carry them to the office or classroom, find somewhere to shop or charge them and then bring them back and remount them for the ride home. At home, the entire process must be repeated if secure parking is not available. An e-bike’s integrated lights, on the other hand, are always there, always powered and hard to steal and they only run out of battery if the bike does.

Electrification enables greater experimentation in form factors as well. Bikes can be reconfigured to carry toddlers safely, transport a week’s worth of groceries and make local deliveries—without requiring Olympian levels of fitness to operate.

Perhaps the most compelling factor favouring e-bikes’ eventual uptake is the ubiquity of the charging network. Unlike electric cars, e-bikes do not require a new network of fast chargers or the installation of specialised chargers in parking lots: Recharging an e-bike merely requires plugging the battery into a standard power socket for a few hours. A modern house is likely to have more than 60 electricity sockets;27 a modern office building housing 1,000 workers may have more than 5,000. In contrast, only 150,000 public fast chargers for vehicles were available globally as of the end of 2018, of which 78 per cent were in China.28 Additional e-bike batteries, which can be carried in a backpack, typically weigh only around 2.5 kilogrammes.29

E-bikes may soon start to invade the niche currently occupied by automobiles thanks to their convenience, utility and relatively low cost. Even electric cargo bikes, though more expensive (at about US$8,000) than standard e-bikes, are much cheaper than most cars—and may be just as useful for running most errands. According to one survey, 28 per cent of e-bike buyers bought the e-bike as a substitute for a car,30 not as an upgrade to a bike. Uber’s foray into e-bikesharing offers further suggestive data. Six months after Uber purchased e-bikesharing company Jump in January 2018, trips by new e-bikesharers on the Uber platform had gone up 15 per cent while the number of car and SUV trips decreased by 10 per cent, with the greatest shift happening between 8 a.m. and 6 p.m.31 Auto manufacturers themselves are getting in on the action. GM has launched a folding e-bike.32 Maserati has designed a 10,000-euro electric racing bike that won the German Design Award in 2019.33 And Volkswagen is marketing an e-cargo bike with a maximum load of 210 kilogrammes (including the driver).34

Electric cargo bikes, in fact, could become a preferred solution for last-mile delivery in cities.35 They emit zero carbon and occupy far less road space than cars when in use or parked. Logistics companies could use comparative data to determine when using e-cargo bikes instead of cars or vans would improve delivery times and reduce costs. One study found that e-cargo bikes could be used for 20 per cent of deliveries.36 This means that e-cargo bikes could make potentially tens of billions of yearly deliveries worldwide: In the United States alone, delivery volumes are rising by 20 per cent per year, with forecast of 285 billion shipments in 2021.37 In the near term, standard-sized delivery trucks could get squeezed out by e-cargo bikes. UPS, for one, is testing electric trikes that can hold up to 181 kilogrammes with a capacity of 2.7 cubic metres.38

The impact on take-away food delivery worldwide could be especially high. Beijing alone sees 1.8 million food deliveries every day.39 A dozen pizzas would overwhelm a mechanical bike and could be awkward even for a moped—but they might fit perfectly on an e-cargo bike.40 In trials, Domino’s Pizza found that e-bike deliveries were not only faster than delivery by car, but also received higher customer service ratings.41

Bikesharing: Bringing bikes to where the riders are

There are billions of bikes in the world, with hundreds of millions of them under individual ownership—but only a small fraction of them are regularly used. One reason for this is because bikes are seldom around when you most need them. With the rise of bikesharing, this may be about to change.

Bikesharing makes bicycles available at the point of demand. More than 1,000 dock-based bikesharing programmes exist worldwide,42 representing tens of millions of shareable bikes.43 The bikesharing market is even attracting bike manufacturers seeking to diversify; specialist folding bike manufacturer Brompton, for example, has 45 rental locations in the United Kingdom.44

Although bikesharing usage is still relatively low—in the United States, for instance, only 45 million trips were made on shared bikes in 2018,45 as opposed to the 115 million cars and trucks driven on US streets every day46—electrification should make bikesharing more appealing in the future by offsetting one of its major current drawbacks: the weight. Shared bikes are designed to be up to three times heavier than a standard bike,47 both to make them more robust and able to withstand heavy use and to make them less attractive to would-be thieves. But heavy bikes can be harder to ride and they may discourage the less fit from making the attempt. An electrified e-bike, on the other hand, can be both robust and easier to pedal than mechanical shared bikes.

Electrified bikesharing programmes, docked as well as dockless, are likely to proliferate in 2020 and beyond. Of the 192 cities in the United States with bikesharing schemes, more than 40 already include e-bikes in their fleet.48 Madison, Wisconsin, for example, converted all of the bikes in its bikeshare programme to electric in June 2019.49 In trials, the Madison e-bikes had generated up to five times as many trips as standard bikes; since the move to all-electric bikes, the programme’s ridership has risen by a factor of 1.5 to 4.50 Conversely, in cities where e-bikes have been withdrawn, bikesharing usage has declined.51

Besides being more user-friendly, shared electric bikes may offer better economics. Hello Bike, a Chinese shared mobility company that started offering shared electric bikes in 2017, has stated that e-bikes are its most profitable division.52 The aggregate number of Hello Bike’s e-bike and e-scooter rides, at 700 million per day, is more than twice that of standard bikes.53

Technologies beyond electrification: Improving the cycling experience

Beyond electrification, technology can offer a host of additional tools for improving the cycling experience, whether on an e-bike or a standard one.

Technology can show when bicycling is the clever choice

In many cities, average car speeds are getting slower and slower and car trips are getting correspondingly longer and longer. This trend may make bikes, particularly e-bikes, the fastest way to get around in some areas. One 2017 analysis pegged average car speed within a mile of the centre of London at 5.13 miles per hour, 19 per cent slower than 2016’s 6.25 miles per hour.54 At that, London is still faster than Manhattan, where cars average 4.7 miles per hour in midtown.55 In Moscow, a study found that drivers spent an average of 210 hours in 2018 in traffic queues.56 Meanwhile, in Copenhagen—where 62 per cent of residents bike to work, school, or university57—49 per cent of one survey’s respondents said that their primary reason for bicycling was because it was faster,58 a greater proportion than cited health benefits, cost savings, or the environment.

Bikers seeking to plan their commutes down to the minute can draw on a range of technologies to help them do so: first, by recording bike journey times; second, by sharing this information with others; and third, by helping them plan even faster routes. The most accessible tool is the smartphone. Using an app, bikers can not only easily log and share their journey times, but also receive time estimates based on aggregated user data. Citymapper, for example, estimates bike journey times for three different types of routes: quiet, regular, or fast. Taking this concept a step further, cyclist-specific smart mobility platforms have recently been piloted in Cologne (Germany), Porto (Portugal) and Trikala (Greece). Bikers on these platforms can upload information on road conditions, building sites, or unexpected incidents such as road accidents, which the platform then shares with other cyclists.59

Apps can quantify the cycling experience in other ways as well. They can calculate the number of calories burnt, as do the Strava and LimeBike apps, or measure the amount of greenhouse petrol not created as a result of not driving, as do some health apps. This kind of information may not motivate everyone to bike, but for those who like their exercise with a bit of gamification, it can act as a further incentive.

Apps also exist for bikesharing. As of July 2019, Google Maps displays bikesharing stations’ locations, as well as how many bikes are available at each, in 24 cities.60 Bikesharing companies’ own dedicated apps can pinpoint available bikes’ locations and their prices as measured by range. Uber, as mentioned above, now rents bikes through its app.61 And in the United States, Lyft offers Citi Bike rentals through its app—having also purchased Motivate, the United States’ largest bikeshare operator, in July 2018.62

Over the coming years, transport apps will likely include real-time information designed specifically for cyclists in the same way that Waze does for motorists. Indeed, these apps could consolidate data on all modes of transportation, allowing commuters to compare journey times across modes at any time.

Technology can make bicycling safer

A major reason that people do not ride bikes—of any type—is because of safety concerns. Here, too, technology can offer multiple solutions.

Accelerometers and gyroscopes, available on most smartphones, tablets and action cameras, can be used to detect a crash. Some bike helmet models can use this capability to call a predefined number on the rider’s smartphone in the event of a collision.63 Wearable airbags are also available. H​övding’s wearable airbag, worn as a collar and charged via USB,64 measures the cyclist’s movements 200 times a second to monitor for abnormalities. In the event of an accident—signalled by an abnormal movement—the airbag inflates to cover the neck and head with an air-filled cushion, dramatically reducing the risk of concussion and almost completely eliminating the risk of skull fracture.

Wireless technologies can also help bikers signal their turns to other road users without taking a hand off their handlebars, which some cyclists feel unsafe doing. Bluetooth-enabled indicator lights integrated into bike helmets, with switches mounted on handlebars, eliminate this difficulty; some such helmets even incorporate a brake light.65 Other helmet models feature short-range communications (up to 900 metres) via an intercom system, complete with integrated microphone and speakers. Up to four cyclists can be connected on the same network.66

Additive manufacturing (3D printing) techniques can improve helmet crash resistance, as well as create highly protective bespoke helmets. One vendor, HEXR, uses 3D scans of a client’s head to 3D-print a helmet constructed with a hexagonal honeycomb cell inner shell. HEXR claims this helmet offers 68 per cent more protection than a regular polystyrene foam helmet, as each printed cell can buckle and bend under impact.

Technology can help protect bikers from social dangers as well. Female cyclists, in particular, can be at risk of being physically attacked,67 and are often subjected to verbal abuse from drivers or male cyclists about their clothing, speed, body size, or even the merits of bicycling while pregnant.68 To help combat these issues, manufacturers are beginning to integrate increasingly high-quality cameras into helmets, lights and bikes. Filming antisocial behaviour does not address the root of the problem, but it may deter or dampen it. Not only can this improve safety for women riders, but it may also help increase overall bicycling participation rates, which tend to be higher in markets where women feel safe bicycling. In the Netherlands, Germany and Denmark, for instance, there is minimal difference between male and female participation rates in cycling and overall cycling rates are among the highest in the world.69 On the other hand, one study of trends in the United States, the United Kingdom, Canada and Australia found that male cyclists outnumbered female cyclists by about two to one.70 In New York and London, about three-quarters of commuter cyclists are male.71

Technology can help redesign cities to be more bike-friendly

For the past century, cities have primarily been designed around cars. Bicycles and their needs for space and storage have usually been an afterthought, if indeed they were thought of at all. The construction of a 10-storey garage would not merit a write-up in a local newspaper. The opening of a three-storey bike park adjacent to a train station in Utrecht, Netherlands made news around the world.72

But although cars are likely to remain prevalent for decades to come, a growing number of cities are beginning to reallocate available space to accommodate other forms of transport, including bicycles. Giving bikes more space is very likely a critical step towards making cities more hospitable to bicycle use: Many people who might otherwise embrace cycling are frightened off by the prospect of sharing a crowded road with big metal vehicles with only a helmet for protection. The good news is that there is plenty of space to reallocate. The United States has more than a billion parking spaces,73 for instance and more than half of all of the country’s city centre space is given over to roads or parking.74

In some cities, effective road redesign has prompted notable habit changes. London has invested hundreds of millions of pounds in creating standalone bike lanes. Partly as a result, cycle journeys in the city grew by 5 per cent in 2018, with more than 4 million kilometres travelled by bike each day.75 The deployment of a dedicated bike lane on one of London’s busiest bridges, which required the removal of a lane previously used for cars, enabled a 5 per cent increase in the number of people crossing the bridge during peak usage hours.76 On the flip side, city planning that fails to consider cyclists’ needs can drive bicycling participation rates down. For instance, the proportion of adults cycling five times a week in Cambridge, UK fell from 32 per cent in 2016 to 29 per cent in 2017, a decline attributed partly to developers’ failure to incorporate cyclists into plans for new streets, road junctions and bicycle parking.77

Data and analytics technologies can aid urban planners’ efforts to devise bicycle-friendly solutions. The amount of data available to planners is growing, while advances in analytics are making this data ever more useful. London’s transport authority is using a digital tool called Cynemon to help inform investments in the city’s bike lanes.78 This tool applies algorithms to data synthesised from multiple sources to determine what routes bikers are most likely to take along Greater London’s network of streets and urban paths. Strava, whose consumer app collects data from millions of bikers and runners around the world, aggregates and anonymises this data through its Metro product and makes it available to departments of transportation and city planning groups to use in improving bicycle and pedestrian infrastructure.79 Depersonalised, aggregated data from mobile network operators could also be used to understand commuter journeys.80

New tools to analyse traffic flow can further improve data quantity and quality. Vivacity Labs has developed an AI tool that can classify road users by transport type from a video feed. Unlike older automated methods that rely on weight to trigger a response, this technology can be used to count bikes and pedestrians as well as heavier cars, buses and trucks.81

Bicycles and bike accessories themselves can be fitted with location and motion sensors to yield useful data. In the United Kingdom, Manchester’s city council subsidised a programme that equipped bikers with See.Sense lights to capture data on routes, journey times, problem spots such as potholes and key pinch points or stoppages.82 The council used the aggregated and anonymised data to understand what routes cyclists were using and where safety concerns were highest due to factors such as lack of infrastructure, adverse road conditions, or overexposure to traffic.

What about e-scooters?

Bicycles aren’t the only two-wheeled vehicle people use to get around. The “micromobility” sector also includes e-scooters,83 which have attracted a great deal of attention in a number of locales.

E-scooters incorporate many of the technologies that are making cycling better and easier: batteries, GPS and data capabilities, app-based access, and availability through sharing platforms. However, despite their popularity—millions of e-scooters have been sold to individuals and to rideshare fleets, and tens of millions of e-scooter trips are taken per year—we have excluded e-scooters from this chapter’s analysis. The reason: We expect that e-scooters will be overwhelmingly used only for first- and last-mile travel, not for entire commutes of many kilometres that can take half an hour or more.

E-scooters’ higher injury rates may also nudge users towards e-bikes and other safer modes. A 2019 Calgary, Canada study of scooter injuries reported to hospitals found that the risk of injury per trip for scooters was 120 times higher than for motorists, and 600 times higher than for buses, compared to a study based on police reported injuries.84

Show more

The bottom queue

The technology industry has a large role to play in encouraging greater bicycle use—a goal that can help society address many challenges arising from continuing global urbanisation. Improving the technology itself—better data analytics to support urban planning, or faster battery recharge times, or apps that help people integrate bicycling into their commutes—is only part of the picture. The other, equally important part is to support policies and programmes that promote bicycling.

The tech industry can’t do it alone, however. Many vertical sectors should be involved for cycling to make a dent in certain entrenched challenges. For example, consider public health and the related issue of health care costs. Standing at an estimated US$8.9 trillion in 2020, health care is one of the developed world’s biggest expenses.85 The adoption of healthier lifestyles could help lower these costs in some markets. To this end, instead of prescribing pills, doctors could offer programmes designed to change behaviour, such as encouraging exercise. This is actually already happening to a limited extent: In the United Kingdom, some doctors are referring patients to a 12-week bicycling course with the aim of making them more confident about being on a bike—and, hopefully, to make bicycling a habit.86

The health benefits of bicycling and other forms of exercise have been proven many times over. As just one example, one major study that followed 236,450 participants for five years found that bicycling to work was associated with a 41 per cent lower risk of dying compared with commuting by car or public transport.87 Cyclists also had a 52 per cent lower risk of succumbing to heart disease than noncyclists, and a 40 per cent lower chance of dying from cancer.88 Even riding an electric bike can improve a person’s health; 89 an e-bike may require less effort, but less effort does not mean effortless. One US study found that people who rode e-bikes for 40 minutes each week for a month improved in cardiovascular health, aerobic capacity, and blood sugar control, while also losing body fat.90

In association with national and local governments, health care systems could use data models to predict the long-term financial benefits of health improvements driven by behavioural modification programmes. These analyses could then be fed into cost models for the redesign of cities and towns to encourage more bicycling.

Employers, too, should be involved in shaping healthier commuter habits. Many companies already invest heavily in a range of worker well-being initiatives. Businesses can encourage people to bike to work in many ways, such as converting existing car parking space to space for bikes (10 bikes can fit into a single standard car parking space).91 New buildings could plan to build in ample space for bikes from the beginning; Zurich’s AXA Winterhur office, which was designed with 1,000 bike parking spaces, is one example.92 Office entrances could include a dedicated ramp for bicyclists.93 Calendar apps can add further incentive by encouraging workers to bicycle to their next meeting rather than drive or take a taxi. The app could show projected travel time for a range of options, including for mechanical and e-bikes; as observed previously, cycling in major cities is likely to be faster than driving or taking public transport, and e-cycling faster still.

In terms of usage, bicycling still makes up only a small fraction of urban transportation modes. In terms of impact, however, bicycling can be immensely important—and the more people who bicycle, the greater the likely societal benefits. As technologies continue to improve, bicycling will most likely continue to become easier, faster, and safer. That’s good news for cities worldwide as they search for more economical and more sustainable ways to move people and things around.

Technology ​Consulting

Today, business and technology innovation are inextricably linked and the demand for technology-enabled business transformation services is rapidly growing. Deloitte technology professionals around the world help clients resolve their most critical information and technology challenges.

Learn more

Thanks to Deloitte’s David Ciampa, Rishabh Kapoor, Shashi Kaligotla, and Shashank Srivastava for sharing their expertise.

Cover image by: Stuart Briers

  1. Richard Florida, “Mapping America’s bike commuters,” CityLab, 19 May 2017.

    View in Article
  2. United Nations, “Around 2.5 billion more people will be living in cities by 2050, projects new UN report,” 16 May 2018.

    View in Article
  3. Ibid.

    View in Article
  4. National Household Travel Survey, “Explore vehicle trips data,” accessed 30 September 2019.

    View in Article
  5. Ebike Portal, “Ogden Bolton Jr and his 1895 hub engine ebike,” 13 February 2015.

    View in Article
  6. Nilesh Bothra, “E-bikes are changing the way we move—A glimpse into e-bike sales around the globe,” Medium, 22 March 2019.

    View in Article
  7. International Nickel Study Group, “The global e-bike market,” September 2014.

    View in Article
  8. Ibid.

    View in Article
  9. It is also worth noting that as of 2020, there is an installed base of 2 billion bikes in the world, most of which are however unused. See Wikipedia, “Bicycle,” accessed 30 September 2019.

    View in Article
  10. TJ McCue, “Global electric bike market is still moving fast—Sondors e-bike offers glimpse,” Forbes, 12 April 2018.

    View in Article
  11. Mordor Intelligence, “Global e-bike market—growth, trends and forecast (2019–2024),” accessed 30 September 2019.

    View in Article
  12. International Energy Agency, Global EV outlook 2019: Scaling up the transition to electric mobility, 27 May 2019.

    View in Article
  13. Michel de Chavanon, “For MY 2020 Bosch focuses on more power at less weight,” Bike Europe, 2 July 2019.

    View in Article
  14. Jo Beckendorff, “Giant Europe reports over 40 per cent e-bike sales growth,” Bike Europe, 15 August 2019.

    View in Article
  15. Jan-Willem van Schaik, “One million e-bikes sold in Germany in 2018: up 36 percent!,” Bike Europe, 21 March 2019.

    View in Article
  16. Jack Oortwijn, “Are supply shortages hitting on Europe’s biggest e-bike market,” Bike Europe, 19 September 2019.

    View in Article
  17. Carlton Reid, “When will e-bike sales overtake sales of bicycles? For the Netherlands, that’s now,” Forbes, 2 March 2019.

    View in Article
  18. Phil Wahba, “E-bike sales are putting a charge in the fortunes of bikemakers,” Fortune, 20 July 2019.

    View in Article
  19. Jack Oortwijn, “E-bike sales skyrockets across Europe,” Bike Europe, 30 August 2019.

    View in Article
  20. It is also worth noting that as of 2020, there is an installed base of 2 billion bikes in the world, most of which are, however, unused.

    View in Article
  21. Bonnie Friend, “What are the true benefits of electric bikes?,” WeLoveCycling.com, 18 December 2018.

    View in Article
  22. Nick Busca, “Electric bikes and UK law: what you need to know,” Cycling Weekly, 13 February 2019; Ma Si, “China adjusts e-bike speed requirements,” China Daily, 16 January 2018.

    View in Article
  23. In Copenhagen, average biking speed in 2012 (a less electrified age) was 15.5 kilometres/hour. See: Cycling Embassy of Denmark, Copenhagen city of cyclists: The bicycle account 2014, May 2015.

    View in Article
  24. Shimano Steps, “On your marks, forget-sweat go! Study proves e-bikers sweat 2/3rds less than regular bikers,” accessed 30 September 2019.

    View in Article
  25. Transport for London, Cycling action plan: Making London the world’s best big city for cycling, December 2018.

    View in Article
  26. Invictus Active, “Wheelchair electric bike attachment: Fantastic addition to any manual wheelchair!,” accessed 30 September 2019; Better Mobility, “Invacare Alber e-pilot,” accessed 30 September 2019.

    View in Article
  27. Electrical Safety First, “Minimum provision of electrical socket—outlets in the home,” March 2018.

    View in Article
  28. International Energy Agency, Global EV Outlook 2019. 27 May 2019.

    View in Article
  29. Bosch eBike Systems, “Bosch batteries,” accessed 30 September 2019.

    View in Article
  30. Selene Yeager, “13 reasons to get stoked about e-bikes,” Bicycling, 3 May 2019.

    View in Article
  31. Matt McFarland, “Uber’s e-bikes are cannibalizing rides from Uber’s cars,” CNN, 19 July 2018.

    View in Article
  32. Thomas Ricker, “Test-riding GM’s Ariv Meld and folding merge e-bikes: General Motors’ first e-bikes have arrived,” The Verge , 21 June 2019.

    View in Article
  33. John Styles, “Maserati road e-bike wins German award,” Cycling Industry News, 9 November 2018.

    View in Article
  34. Copenhagen Bikeshow, “Volkswagen enters cargo ebike market,” accessed 30 September 2019.

    View in Article
  35. Richard Schrubb, “How UPS sees electric cargo bikes fitting into global logistics,” Electric Bike Report, 10 May 2018.

    View in Article
  36. Carlton Reid, “Cargobikes not drones are the future for urban deliveries,” Forbes, 15 October 2018.

    View in Article
  37. Bill Ciervo, “18 Ecommerce order fulfillment statistics that’ll change the way you think about retail,” Conveyco, 8 January 2019.

    View in Article
  38. Micah Toll, “UPS expands use of electric cargo bicycles for deliveries,” Electrek, 26 October 2018.

    View in Article
  39. Gentlemen Marketing Agency, “Chinese food ordering apps: What you should know?,” 4 February 2019.

    View in Article
  40. Micah Toll, “Domino’s to start delivering pizzas by electric bicycle after successful pilot,” Electrek, 13 August 2019.

    View in Article
  41. Ibid.

    View in Article
  42. Wikipedia, “List of bicycle-sharing systems,” accessed 30 September 2019.

    View in Article
  43. Padraig Belton, “How cheap dockless hire bikes are flooding the world,” BBC, 15 May 2018.

    View in Article
  44. Brompton Bike Hire, accessed 30 September 2019.

    View in Article
  45. National Association of City Transportation Officials, “84 million trips taken on shared bikes and scooters across the US in 2018,” April 17, 2019.

    View in Article
  46. Adie Tomer, “America’s commuting choices: 5 major takeaways from 2016 census data,” Brookings, October 3, 2017.

    View in Article
  47. Eillie Anzilotti, “Turns out, people really miss e-bikes when they’re taken away,” Fast Company, April 25, 2019.

    View in Article
  48. Julissa Trevino, “E-bikes take the lead in city bikeshare programs,” U.S. News & World Report, August 12, 2019.

    View in Article
  49. Eillie Anzilotti, “Madison is the first city to go 100% electric for its bike share,” Fast Company, June 18, 2019.

    View in Article
  50. Trevino, “E-bikes take the lead in city bikeshare programs.”

    View in Article
  51. Anzilotti, “Turns out, people really miss e-bikes when they’re taken away.”

    View in Article
  52. Rita Liao, “Hellobike, survivor of China’s bike-sharing craze, goes electric,” TechCrunch, July 15, 2019.

    View in Article
  53. Ibid.

    View in Article
  54. Other cities in the UK, such as Manchester and Edinburgh were not as slow, but still averaged under 10 miles per hour. See Natalie Middleton, “Average driving speeds plummet in UK’s major cities,” Fleet World, 2017.

    View in Article
  55. Nina Agrawal, “The average speed of traffic in Midtown Manhattan is 4.7 mph. New York thinks it’s found a solution,Los Angeles Times, January 24, 2018.

    View in Article
  56. The Moscow Times, “Moscow has the worst traffic jams in the world, study says,” February 13, 2019.

    View in Article
  57. Wikipedia, “Cycling in Copenhagen,” accessed September 30, 2019.

    View in Article
  58. Cycling Embassy of Denmark, Copenhagen city of cyclists.

    View in Article
  59. Karen Rike Greiderer, “The smart city of the future—Cologne launches the ‘Smart bicycle traffic challenge’,” Urban Independence Magazine, October 10, 2018.

    View in Article
  60. Andrew Hyatt, “Real-time bikeshare information in Google Maps rolls out to 24 cities,” The Keyword, Google, 16 July 2019.

    View in Article
  61. Sasha Lekach, “After Uber bought Jump, people started riding bikes instead of ordering cars,” Mashable, 8 February 2019.

    View in Article
  62. Andrew J. Hawkins, “Citi bikes can now be rented through the Lyft app,” The Verge , 22 May 2019.

    View in Article
  63. Paul Norman, “Now specialised helmets call for help if you crash,” Cycling Weekly, 28 November 2018.

    View in Article
  64. Hövding Sverige, “The world’s safest bicycle helmet isn’t a helmet,” 26 September 2019, YouTube video, 1: 49.

    View in Article
  65. Caroline Dean, “Four of the best smart bike helmets with brake/indicator lights,” Kit Radar, accessed 30 September 2019.

    View in Article
  66. Sena, “X1: First-ever Bluetooth integrated cycling helmet,” accessed 30 September 2019.

    View in Article
  67. Anna Allatt, “What is stopping women from cycling?,” BBC, 21 January 2018.

    View in Article
  68. Victoria Hazael, “Cycling with a bump—is it safe to ride whilst pregnant?,” Cycling UK, 22 March 2014.

    View in Article
  69. Suzanne Motherwell, Are we nearly there yet?” Exploring gender and active travel, Sustrans, February 2018.

    View in Article
  70. Ibid.

    View in Article
  71. Aaron Short, “Tally Ho! London breaks its cycling record,” Streetsblog, 8 July 2019.

    View in Article
  72. Andrew J. Hawkins,“I can’t wrap my feeble American brain around this massive bike parking garage in the Netherlands,” The Verge , 20 August 2019; Daniel Boffey, “World’s biggest bike parking garage opens in Utrecht—but Dutch dream of more,” Guardian, 7 August 2017; Xinhua, “In pics: new parking facility in Utrecht, the Netherlands,” 20 August 2019; Darko Janjevic, “Utrecht opens ‘world’s biggest’ bicycle parking lot,” Deutsche Welle, 21 August 2018.

    View in Article
  73. Brad Plumer, “Cars take up way too much space in cities. New technology could change that.,” Vox, accessed 30 September 2019.

    View in Article
  74. Charlie Gardner, “We are the 25%: Looking at street area percentages and surface parking,” Old Urbanist, 12 December 2011.

    View in Article
  75. Gwyn Topham, “London records biggest rise in cycling journeys in 2018,” Guardian, 3 July 2019.

    View in Article
  76. Transport for London, Cycling action plan.

    View in Article
  77. Annie Gouk and Alistair Ryder, “Cambridge is the UK’s cycling capital—but it’s on the decline,” Cambridge News, 2 September 2018.

    View in Article
  78. Transport for London, Strategic cycling analysis: Identifying future cycling demand in London, June 2017.

    View in Article
  79. Strava Metro,” accessed 30 September 2019.

    View in Article
  80. Transport for London, “Event data from mobile devices,” accessed 30 September 2019.

    View in Article
  81. VivacCity Labs,” accessed 30 September 2019.

    View in Article
  82. See.Sense, “Manchester and See.Sense cycling data trial,” accessed 30 September 2019.

    View in Article
  83. Rasheq Zarif, Derek M. Pankratz, and Ben Kelman, Small is beautiful: Making micromobility work for citizens, cities, and service providers, Deloitte Insights, 15 April 2019.

    View in Article
  84. Rosa Saba, Calgary doctors push helmets as e-scooter injuries send an average of six people to hospital a day, 18 September 2019; Laurie F. Beck, Ann M. Dellinger, and Mary E. O’Neil, “Engine vehicle crash injury rates by mode of travel, United States: Using exposure-based methods to quantify differences,” American Journal of Epidemiology 166, (2007): pp. 212–8, DOI: 10.1093/aje/kwm064.

    View in Article
  85. Global health care expenditures are expected to continue to rise. Spending is projected to increase at an annual rate of 5.4 percent between 2017–2022, from US$7.724 trillion to US$10.059 trillion. Deloitte, “2019 Global Health Care Outlook: Sharing the future,” 2019.

    View in Article
  86. Neil Roberts, “GPs back plan to prescribe cycling lessons for patients,” GP, 2 February 2019.

    View in Article
  87. Jason Gill and Carlos Celis-Morales, “Cycling to work: Major new study suggests health benefits are staggering,” The Conversation, 20 April 2017.

    View in Article
  88. Ibid.

    View in Article
  89. Michael Barnard, “Major study shows electric bikes good for health,” CleanTechnica, 6 December 2018.

    View in Article
  90. Considerable, “The popularity of electric bikes is skyrocketing among older riders,” 3 September 2019.

    View in Article
  91. Rupprecht Consult, “Bicycle parking in the city centre,” accessed 30 September 2019.

    View in Article
  92. Adele Peters, “This sleek Zurich office building has public parking for 1,000 bikes,” Fast Company, 30 September 2016.

    View in Article
  93. Alyn Griffiths, “Studio RHE converts three historic buildings into ‘London’s first cycle-in office’,” Dezeen, 16 September 2015.

    View in Article

Did you find this useful?

Thanks for your feedback

If you would like to help improve Deloitte.com further, please complete a 3-minute survey