Skip to main content

Trustworthy AI

Artificial intelligence (AI) has become one of the key technologies of this century and plays an increasingly essential role in answering the challenges we face. AI will impact our daily lives across all sectors of the economy. However, to achieve the promise of AI, we must be ready to trust in its results. We need AI models that satisfy a number of criteria and thus earn our trust.

What makes AI trustworthy?

Artificial Intelligence (AI) has long fascinated both computer scientists and the public since the term was coined in the 1950s. Since then, the sensationalist scaremongering about runaway AIs gradually gave way to a grounded, realistic view: AI is a sophisticated technology – or set of technologies – with the potential to deliver significant economic, scientific and societal advantages. It is an immensely powerful tool with wide-ranging potential. Over the next 10 years, experts expect an incremental economic impact of AI worldwide between $12 and $16 billion. 

It's time for Trustworthy AI

Implemented properly, AI enables us to become leaner & faster, smarter, more personalized. With AI, we can examine and learn from data at a speed and scale that took our predecessors generations.  Proper implementation is not automatic – it requires skills, experience and discipline. Open source toolkits have effectively “democratized” software development and led to a rapid proliferation in AI-based tools – from experts and debutants alike. This dynamic introduces both opportunities and risks. For example, AI models can be easily re-trained on new data sets, keeping them relevant and up-to-date.  

On the flipside: model quality varies widely, use-cases can be questionable... and the AI models themselves cannot be held accountable for erroneous outcomes. These realities present several governance issues, recognized by researchers, practitioners, business leaders, and by regulators. The regulation of AI as proposed by the European Commission (see inset text) recognizes these risks. It addresses the need for data quality, transparency, fairness, safety, robustness - and above all ethics in application of AI.  Where the regulation focuses on “what”, our aim is to guide you on “how.” 

Relevant for the entire life cycle