Deloitte.

Zero Trust Solutions

Secure Software Development Lifecycle™

e
MAKING AN \

IMPACT THAT
MATTERS

sioe //@

N

Zero Trust Solutions| Secure Software Development Lifecycle

Integrating and automating security to the
Secure Software Development Lifecycle™

(SSDL) model

Amid an era of digital transformation and disruption,
the need for organizations to accelerate their
implementation of evolving business requirements

is driving the need for rapid platform and application
development. In response, software, cybersecurity,
and information technology (IT) operations need more
efficient ways of working together, giving rise to what's
known today as the software security development
(SSDL) model. Far more than a buzzy rebrand of long-
standing processes, SSDL introduces a fundamentally
new approach to addressing secure multi-cloud
ecosystem development and deployment.

Executed effectively, an SSDL model creates a secure-
by-design culture with secure development practices,
promotes transparency of security vulnerabilities,
creates tight collaboration between teams, and drives
agility. The model's primary cybersecurity goal is a
reduction or elimination of manual controls that have
historically had a significant impact on business and

IT teams, with reasons that include issues with cycle
time; false positives; and inefficient, voluminous output.
These challenges have also contributed to a more
significant issue—the identification of defects later in the
development cycle rather than sooner, when they are
far costlier and more difficult to remediate. SSDL helps
to address the issue by leveraging integrated automated
controls by design.

With this in mind, Palo Alto Networks, Inc., and Deloitte
collaborated on a portfolio of services that utilize the
SSDL model to embed security early in the software
development lifecycle. The goal: further helping to avoid
risk and expedite secure multi-cloud adoption and
operations through early detection and remediation

of vulnerabilities.

The portfolio helps clients enforce security at every
stage of the multi-cloud ecosystem through accelerators
that enable faster delivery of thoroughly assessed and
securely configured infrastructure or applications into
cloud environments. Doing so enables continuous
monitoring of deployed infrastructure for configuration
drifts, in addition to enforcing automated,

actionable workflows.

&0

Zero Trust Solutions | Secure Software Development Lifecycle

approach increases the speed at which organizational
business units can provide quality code.

Moving to an SSDL model doesn't happen overnight. * Enhanced security and compliance: Security and
Rather, 'tS, ; S;ratedg'f a”,d C(?ntlnual Improvement compliance controls are baked into both the design
process aimed at delivering: and develop phases as guardrails that help ensure

adherence and alignment to regulatory and security
requirements. Additional security auditing, monitoring,
and notification systems are automated, and outputs
are fed back into the pipeline—providing continuous,

* Continuous security: Embracing an SSDL model
requires leveraging automated code scanning and
automated application security testing throughout the
development lifecycle. Actions begin at the granular

level, at the integrated development environment (IDE) demonstrable compliance.
and version control system (VCS,) Ir.evels., with Fhe ability * Increased collaboration: Leveraging the SSDL model
to scan and correct the code as it is being built. . .

at the early stages of development by integrating

secure development, security, and operations fosters
a culture of openness, transparency, and collaboration
between IT and organizational business units.

* Increased e iciency and product quality: Security
vulnerabilities are detected and remediated as early as
possible when the cost to fix them is lower. This

In the SSDL world, security controls are continuously integrated into both the development and
operations stages

Development security controls
r__| |r
+ Log health and security

Inject static code
relevant events.

analysis tools early into
the development
process,

+ Implement
configuration, patch,
privilege and user

+ Apply fixes to open-
management.

source software prior to
deployment via
automated Software
Component Analysis.

+ Perform regular
vulnerability
assessments to identify
and remediate potential I
application weaknesses,

« Monitor the production [

environment for
deviations from

Perform automated
attacks against pre-
production code.

vevelopme,,,
suonesadO

* Prevent pre-production
code from reaching
production if cloud
configuration doesn’t
pass automated
compliance scans.

expected behavior
and/or explaitation of
known/unknown
vulnerabilities.

Zero Trust Solutions| Secure Software Development Lifecycle

More on development-based security controls

Traditional software security models use tollgates and checkpoints to test for vulnerabilities after application
development is complete. This approach stops forward-flow momentum by sending the application product back to
development teams for rework and remediation when a vulnerability is found. In contrast, the SSDL model provides
an integrated approach to web application and API security, along with capabilities such as vulnerability management,
compliance, and runtime defense.

SSDL's objective is to secure an application in its design stage by creating as many secure services as possible for
developers to take advantage of in the continuous integration/continuous delivery (CI/CD) pipeline. The following
table highlights how many security services can be leveraged before and after the product development lifecycle to
reduce workload and impact on the code development pipeline

Activity Where in the Secure Software Comments
Development Lifecycle (SSDL)

The Deloitte/Palo Alto Networks
SSDL model leverages both
regulatory and custom
requirements, along with Deloitte's
guardrails library, to design and
develop policies that enable
process automation using Palo
Alto Networks Prisma® Cloud
components.

Requirement integration in

the design phase Design and develop

Performing a threat assessment
of the application product before
development begins can highlight
where likely vulnerabilities exist;
which code will handle critical

Build, test, and deploy activities (e.g., authentication,
payment) and may therefore be
at higher risk; and what degree
of cybersecurity testing will be
needed, as not all code should be
treated equally.

Application architecture
design and threat modeling

Cloud and infrastructure
Monitor and operate monitoring can be run ahead
of development.

Continuous cloud
infrastructure monitoring

Having a self-service secrets

management solution in place

in advance of development can
Build, test, and deploy considerably increase application

security, for the minor cost of a few

lines of code generated by

the developer.

Application secrets
management

Zero Trust Solutions | Secure Software Development Lifecycle

Activity

Where in the Secure Software
Development Lifecycle (SSDL)

Comments

Container security
vulnerability scanning

Build, test, and deploy

In enabling self-service security
container template repositories,
developers can reduce the need
for container security vulnerability
fixes later in the process.

Inherent orchestration
security

Build, test, and deploy

A secured CI/CD platform should
be established to help reduce audit
compliance efforts later down

the road.

Source code library,
vulnerability scanning, and
remediation

Build, test, and deploy

While creating a secure allow-list
open-source library catalog is an
iterative process, if often reduces
defect debt. New open-source kits
can be scanned in parallel with
ongoing development.

Static, dynamic, and
interactive code
vulnerability scanning and
remediation

Build, test, and deploy

Full static scanning and
dynamic testing may still

affect development; however,
vulnerability findings can be
reduced by introducing near-
real-time code scans into

the developer's integrated
development environment (IDE).

Penetration testing

Monitor and operate

Penetration testing remains the
same, and is usually performed
when the product is packaged
before deployment.

Continuous application
monitoring

Monitor and operate

Although developers initially need
to enable their application to be
monitored in the cloud, it can be
run post-deployment and does not
affect the development process.

Zero Trust Solutions| Secure Software Development Lifecycle

1. Infrastructure as code scanning: Infrastructure as
code presents an opportunity to secure
cloud infrastructure before it's ever deployed to
production. Streamline security by identifying
misconfigurations before the infrastructure is
deployed to the cloud. Embed misconfiguration
checks in developer tools and automated feedback
and fixes in code.

2. Container image scanning: The rampant usage of
container images on the cloud imposes the need for
broad guardrails on them. Implement image
scanning to identify vulnerabilities at the early stage of
development.

3. Secrets scanning: Identification of secrets in code
files before production is an imperative step in code
scanning. Secrets identified in the development of
infrastructure-as-code (laC) templates and container
images should be removed before deployment.

4. Policy as code: Policy as code (PaC) is an approach
to policy management in which policies are defined,
updated, shared, and enforced using code. Policy as
code methodologies should be continuously
updated with industry-leading practices or security
feedback, as well as version-controlled and tested
against live code repositories.

Due to the ephemeral nature of IT assets in the cloud,
traditional methods of tracking assets and monitoring
activity have become obsolete. Rather, dynamic
attribution methods (such as tagging) are built into the
SSDL environment using Palo Alto Networks Prisma
Cloud components, so that assets created and deployed
through automation can be instantly visible

and traceable.

Additionally, if a mis configured or unauthorized publicly
accessible service is stood up, an automated
configuration correction or deletion using Palo Alto
Networks Prisma Cloud Code Security rules can
potentially be applied in less than a minute, enhancing
protection from accidental or intentional vulnerability
exploits.

Examples of operations-based
security controls

Real-time continuous monitoring: Routinely monitor

configurations of the infrastructure in order to measure
and detect compliance with technical controls.

Near-real-time auto-correction: Auto-correct “drift”
by applying baseline configurations.

Continuous reporting and visualization: Leverage
real-time dashboards in order to gain visibility into
assets, noncompliance, and security posture for
cloud environments.

Zero Trust Solutions | Secure Software Development Lifecycle

Alerting and notification: Establish integration of
security events with enterprise security information
and event management (SIEM), as well as security
orchestration, automation, and response (SOAR). Set up
real-time notifications for desired stakeholders.

Control requirements: Achieve continuous alignment
with industry standards and leading practices.

Automated configuration management: Implement
automated configuration monitoring, as well as patch
management, privileged access, and user

management controls.

Zero Trust Solutions| Secure Software Development Lifecycle

The SSDL team

The SSDL model emphasizes culture change—one that results in a world where developers, operations, and security
teams can collaborate more efficiently. Security teams work more closely with application developers and operations
teams, so that they can better understand daily habits and workflows and more effectively integrate continuous
security into the software development lifecycle (SDL), 1aC, etc.

Deloitte and Palo Alto Networks SSDL framework

Security needs to be embedded in each step of the software lifecycle. This is to both safeguard operating
environments and develop the ability to proactively react to adverse cyber incidents. Below is an overview of how
Deloitte and Palo Alto Networks approach the SSDL framework.

Secure Software Development Lifecycle (SSDL) Model

Organizations need to integrate and embed security in each step of their cloud journey, to safeguard their cloud environment and develop the ability to
proactively react to adverse cyber incidents. Diagram below illustrates how Secure Software Development Lifecycle (SSDL) model can integrate security capabilities at each step.

Design and Develop Build, Test & Deploy Monitor & Operate
)
TS P "
H § « IDE and VCS integration/scanning « IDE and Palo Alto Networks Prisma Cloud security tool integration + Threat monitoring
s « laC and Container security/scanning « Pre-commit and commit phase integrations + Vulnerability Monitoring
89 « laC configurations « Container images and Secrets scanning + Privileged identity monitoring
:3 « Cloud-native architectures and toolkits « Alert notification * Policy evaluation and monitoring
2
'E 9; Version control systems (VCS) y
- Architecture Pre-commit _' @] . .
) patterns feedback Policy as code Cloud Se‘lz\;ll:r:iytfr;ogmphance

o >) o >
En§ Secure (Host, Container, Identity, Application,
<.z y. App
Be Configuration e Vulnerability, 1aC, Serverless, etc.)
& Guidance pip

« CI/CD pipeline integrations .
Control I_@_’ + laC & PaC scanning Cloud Security

3 A improvements Secure + Advanced Threat Protection (ATP) Da.sl.)bac.ﬂd,
] Infrastructure Infrastrudcture s+ Access controls using OPA . Notification &
R Provisioning ELS * Runtime defense Cloud Automation Reporting
I=kS A Threat monitoring (Terraform) + Workload protection Cloud
L feedback SIEM and SOC | Security

Enhancements to Guardrails and workflows Analytics
A Continuous Compliance CSPM rules

5 Monitoring Feedback . .

& Re-visiting security Enhancements to laC

= architecture baselines (Terraform) Case management (XSOAR) and

8¢

é ITSM integrations
P
§ E Integrating and automating security into a Secure Software Development Lifecycle (SSDL) model
= (=
al =« >

« Deloitte Guardrails « Cloud Strategy & Governance * Microservice architecture containers, and serverless * Orchestration and « Security and compliance

* Client Custom Requirements « Vulnerability Management functions) automation analytics

* Prisma Cloud Code Security « Compliance scanning + Web-Application and API Security * CloudSecOps workflow « Feedback to design and build
* Process Automation * Runtime scanning (hosts, (WAAS) automation phases

« Policy Design (Declarative & * Reporting and alerting

imperative)

Design and develop

Security guardrails should be enforced during every
step of the design and develop phase, so that any
misconfigurations are fixed earlier in the software
lifecycle in order to enable secure

infrastructure provisioning.

* Secrets identification implementation, including
passwords and tokens in laC templates in IDEs,
command-line interfaces (CLIs), local or in-registry
container images, pre-commit, and CI/CD tooling, etc.

¢ Automated feedback and code fixes for identified
misconfigurations should be in place.

Specific aspects to embed in this phase include: Feedback from tools such as continuous compliance
monitoring, threat monitoring, and control
improvement's feedback should be implemented

in policy as code in regular iterations. They should be
used to scan the code files or images for

misconfigurations at every stage of development.

* Policy-as-code guardrails should be codified with
industry-leading practices, Deloitte secure guardrails,
as well as any requirements stipulated by compliance,
cloud governance and custom requirements.

* Scanning for misconfigurations within default and
custom-created policies should be integrated with

developer tools such as IDE, and VCS and CI/CD.
7

* Security baselines should be revisited frequently in
order to fine-tune existing guardrails used
for scanning.

* A Zero Trust framework should be enabled throughout
design and development. Scanning of architectures
with advanced threat modeling use cases should also
be implemented.

Build, test, and deploy

Once dependencies and code files are packaged
together, the entire build should undergo a more in-
depth analysis of security threats and misconfigurations
in the application or code.

Specific aspects to consider during this phase include:

* The integrated scanning of laC templates, container
images, and serverless functions with CI/CD tools. The
goal here is to identify vulnerabilities in any code files,
operating systems, and open-source packages built
into container image layers or serverless functions.

Detection and prevention of misconfigured code
builds found in the repository. Builds will not achieve
their expected value unless the misconfigurations
identified are not fixed.

Added guardrails that block images with less-than-
severe vulnerabilities before they are pushed
to production.

The return of automated pull requests with detailed
remediations to the source code location for
identified misconfigurations.

Performance of vulnerability scans to harden images.
This is to leverage build-time scanning and trusted
registries for a more secure container image

supply chain.

Putting alert notification and real-time dashboards
in place for monitoring of important events during
deployment activities.

Incorporation of access controls to in order to
segregate duties, along with authorization tollgates to
review and accept build requests.

Frequent revisiting of security baselines in order to
fine-tune existing scanning guardrails.

Zero Trust Solutions | Secure Software Development Lifecycle

Monitor and operate

The code released into the environment needs to be
normally monitored to identify security or
configuration drifts.

Specific aspects to be considered during this
phase include:

 Continuous monitoring of infrastructure configurations
for compliance, technical, or baseline control drifts.

* Auto correction of drifts in near real time through
baseline configurations.

* Continuous monitoring of vulnerabilities across
host operating systems (OS), container images, and
serverless functions.

* Implementation of runtime defense on hosts, along
with the establishment of a regular patch
management cadence.

Establishment of a single unified console provide
continuous visibility across all deployed assets and
their posture or configurations.

Establishment of user entity behavior analytics
(UEBA) to monitor cloud environments for unusual
user activities in order to discover insider threats and
potential account compromises.

Continuously monitoring of unused or risky
permissions tied to cloud entitlements to remove
unwanted access to cloud resources. This is done by
detecting overly permissive or unused access policies
automatically and evaluating affected permissions that
should exist.

* Implementation of orchestration playbooks and
automation workflows. The goal here is to notify the
appropriate stakeholders of important security events
and to establish change management.

* Continuous alignment with industry standards and
leading practices. This is accomplished through routine
management and fine-tuning of rules governing
cloud-native infrastructure, docker configurations,
containers, images, nodes, plugins, and services to
determine a secure environment.

Zero Trust Solutions| Secure Software Development Lifecycle

Deloitte Accelerators
Deloitte solutions leveraged to achieve the SSDL model:

* Security automation that provides for the
implementation of security automation use cases
and patterns to enable near-real-time remediation of
security drifts—from baseline configuration standards
to secure core cloud services.

* Cloud controls framework that provides a library of
policies mapped to industry-leading standards. It can
be leveraged to fine-tune organizational
security guardrails.

Palo Alto Networks Solutions
Palo Alto Networks solutions integrated and referenced
as part of the SSDL model:

* With scanning support for laC templates, container
images, open source packages and delivery pipelines,
Prisma Cloud provides code security backed by an
open source community and years of expertise and
threat research. With connected visibility and policy
controls, engineering teams can secure their full stack
without leaving their tools, while security teams can
ensure that all deployed code is secure.

Prisma Cloud's unique Cloud Security Posture
Management (CSPM) solution eliminates cloud blind
spots, proactively address risks and reduces the
complexity of securing multi-cloud environments
while radically simplifying compliance.

The Cloud Workload Protection module for Prisma
Cloud delivers flexible protection to secure cloud VMs,
containers and Kubernetes apps, serverless functions
and containerized offerings like Fargate tasks. With
Prisma Cloud, DevOps and cloud infrastructure teams
can adopt the architecture that fits their needs
without worrying about security keeping pace with
release cycles or protecting a variety of tech stacks.

The Cloud Infrastructure Entitlement Management
module for Prisma Cloud addresses the complexities
of entitlement management across multi-cloud
environments by providing deep visibility and control
of permissions, and automatic remediation of overly
permissive and other risky permissions.

Security automation and orchestration that provides
automation-driven detection, investigation, and
response workflows for security operations.

Deloitte's award-winning Cyber & Strategic Risk
consultants have joined forces with Palo Alto Networks
and its security capabilities platform. Together, we're
working to provide a broad range of solutions that
simplify the complex software development lifecycle,
while increasing speed, agility, and enablement so

that organizations like yours can better protect their
infrastructure and workloads at every stage of the
development lifecycle.

Our joint solution can help you create a cyber-minded
culture for your organization so that it can move forward
fast and stronger, fuel more innovation, and stay more
resilient in the face of persistent and ever-changing
cyberthreats—all while accelerating time to market and
reducing costs.

i

"i%_

Zero Trust Solutions | Secure Software Development Lifecycle

Authors

PALO ALTO NETWORKS ALLIANCE LEADERS
Jane Chung

PALO ALTO NETWORKS ALLIANCE LEADERS
Kieran Norton

Principal Managing Director

US Cyber & Strategic Risk US Cyber & Strategic Risk
Deloitte & Touche LLP . Deloitte & Touche LLP
kinorton@deloitte.com jachung@deloitte.com

Siddharth Kantroo
Advisory Senior Manager
US Cyber & Strategic Risk
Deloitte & Touche LLP
skantroo@deloitte.com

Anthony Polzine

Senior Manager

Global Partner Solution Architect
Palo Alto Networks
apolzine@paloaltonetworks.com

1 i

L

L
LT
LT
qgg Ui
LU T

VO | e
L LT A L T

e momomom

1!
LTI

—~ ."ﬂlu"l_iluu‘ig_
-

Deloitte

About this publication

This publication contains general information only and Deloitte and Palo Alto
Networks are not, by means of this publication, rendering accounting, business,
financial, investment, legal, tax, or other professional advice or services. This
publication is not a substitute for such professional advice or services, nor should it
be used as a basis for any decision or action that may affect your business. Before
making any decision or taking any action that may affect your business, you should
consult a qualified professional adviser. Deloitte and Palo Alto Networks shall not be
responsible for any loss sustained by any person who relies on this publication.

As used in this document, “Deloitte” means Deloitte & Touche LLP, a subsidiary of
Deloitte LLP. Please see www.deloitte.com/us/about for a detailed description of
our legal structure. Certain services may not be available to attest clients under the
rules and regulations of public accounting.

Copyright © 2023 Deloitte Development LLC. All rights reserved.

