

Deloitte.

GSA GTI

Semiconductor talent
transformation study:
Chips, choices, and the
AI rush

Contents

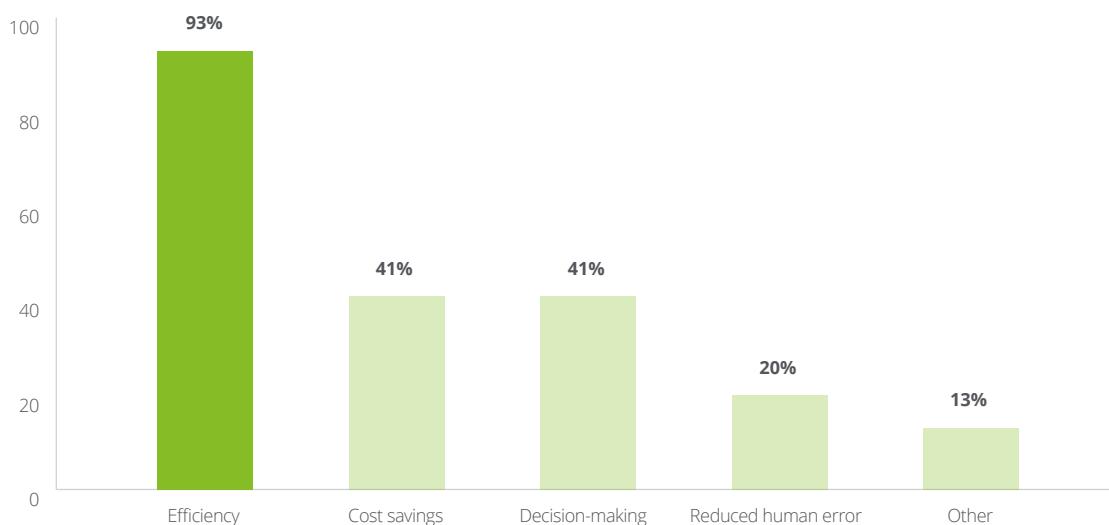
Introduction	3
No. 1: Reengineering efficiency: AI's expanding role in the chip industry	4
No. 2: Humans + machines: Inside the new rhythm of semiconductor work	5
No. 3: Firewalls and skill gaps: The twin speed bumps slowing AI ambition	6
No. 4: The human hesitation: When AI meets ambiguity and concern	7
No. 5: The great chip reskilling: Building a workforce ready for the AI era	8
No. 6: The localization illusion: Why 'made here' still faces a global reality check	9
From insights to action	10
Appendix	11

Introduction

Artificial intelligence (AI) is becoming a core driver of how the semiconductor industry operates. The technology is increasingly being used to help revolutionize chip design, manufacturing, and performance optimization. At the same time, efforts around reshoring and localization have moved from policy discussions to strategic business priorities, as leaders focus on building greater resilience amid ongoing global uncertainty. To chart how the industry is adapting, Deloitte and the Global Semiconductor Alliance (GSA) surveyed senior leaders across integrated device manufacturers, foundries, and fabless companies worldwide in the summer of 2025. The result? A mix of momentum and disruption.

AI is both an efficiency engine and a strategic edge, and it is being used to help compress cycles, sharpen decisions, and create new power dynamics inside the industry. And yet, progress may be stalling on the human front. Talent shortages, security fears, and cultural drag remain the sand in the gears. The next wave of competitive advantage in the semiconductor industry will likely be built on the skills, trust, and strategic courage of leaders who fuse AI's potential with human ingenuity to outpace disruption and define the next era of chipmaking.

No. 1: Reengineering efficiency: AI's expanding role in the chip industry


For decades, the semiconductor industry chased performance through physics. Smaller nodes. Bigger wafers. Higher yields. Now it's chasing performance through intelligence. AI has become the new driver, improving yield, accelerating design cycles, and predicting equipment failures before they happen. Leading technical articles and vendor case studies point the same way: AI and advanced analytics are shifting value creation from "smaller transistors" to "smarter systems" across both design and manufacturing.

In the Deloitte–GSA survey, 93% of leaders said efficiency is the number one reason they invest in AI. Public examples align with that. For instance, Synopsys reports that its DSO.ai explores¹ far larger design spaces, yielding up to double-digit power reductions and substantial die-size gains while compressing time to results. Cadence's Cerebrus enabled Texas Instruments to improve power, performance, and area (PPA) and cut violating paths by orders of magnitude in production flows.² Siemens EDA is also applying AI to its portfolio to compress design cycles and enhance productivity, citing up to 10 times efficiency gains and roughly 10% improvements in PPA across advanced digital design environments.³

A close secondary motivation was cost savings and sharper decisions with 41% of surveyed leaders identifying these as reasons for integrating AI into their businesses. Many companies are leveraging AI to help ensure the right actions are taken faster and at lower cost. Industry trade outlets and vendor data echo the same connection between analytics and better factory decisions, from yield-loss diagnosis to predictive maintenance and scheduling.⁴

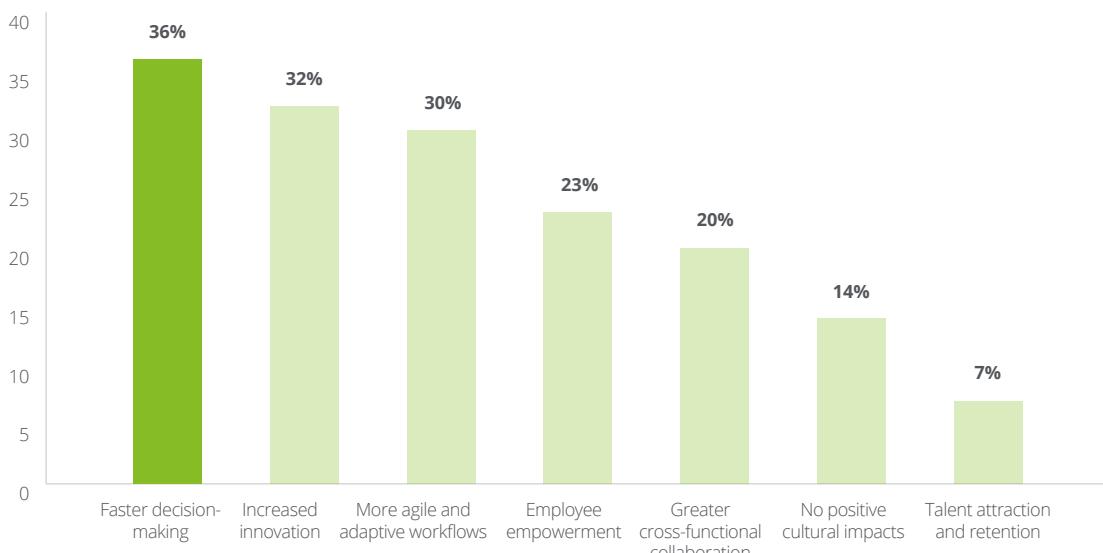
Interestingly, only one in five surveyed leaders lists "reduced human error" as a primary driver for integrating AI in their organizations. Other evidence appears to back that: *IEEE Spectrum*'s technical review argues that on its own, AI won't be able to design a complete chip any time soon. Paired with domain expertise, however, AI acts as a force multiplier that improves quality and compresses once-manual loops.⁵ AI has gone from experiment to infrastructure, from edge case to competitive edge. With more than a hundred AI-assisted tape-outs and counting, momentum is surging as foundries and toolmakers weave AI into everyday workflows.⁶

What are the primary drivers for integrating AI in your organization?*

*Respondents could select up to two choices

Source: Deloitte–GSA survey, 2025

No. 2: Humans + machines: Inside the new rhythm of semiconductor work


The semiconductor industry has typically been a mix of precision and speed. Now it's adding prediction and pattern recognition, too, allowing engineers and algorithms to co-drive innovation. In the Deloitte–GSA survey, 36% of leaders noted faster decision-making as the biggest cultural impact of AI. In a domain where cycle time determines success, AI is compressing latency, turning "wait for the next meeting" into "act on the next signal."

Thirty-two percent of surveyed leaders report increased innovation as a key outcome, and a similar number highlighted more adaptive workflows. Twenty-three percent of respondents identified employee empowerment as a key cultural gain from AI adoption—a trend reflected in expanded data visibility and more informed decision-making across functions. Lastly, 20% saw greater cross-functional collaboration because of AI integration. When everyone has the same real-time insights, decisions can move faster and internal "turf wars" are likely to fade. For example, Intel's AI for Manufacturing

program gave engineers a GenAI-driven root cause-analysis tool, reducing fab downtime and accelerating incident resolution, saving millions in productivity losses.⁷ Equipment vendors are acting, too, with ASML working on AI-driven control systems that can adjust lithography parameters on the fly, compensating for temperature drift, material inconsistencies, and equipment aging. In effect, the machine "learns" to protect yield margins without constant manual intervention, helping employees to make the overall process more agile and adaptable.⁸ Samsung's AI Megafactory initiative demonstrates how Generative AI-driven service automation is reshaping organizational culture in semiconductors, embedding data-driven intelligence across workflows and empowering employees to focus on innovation and higher-value tasks.⁹

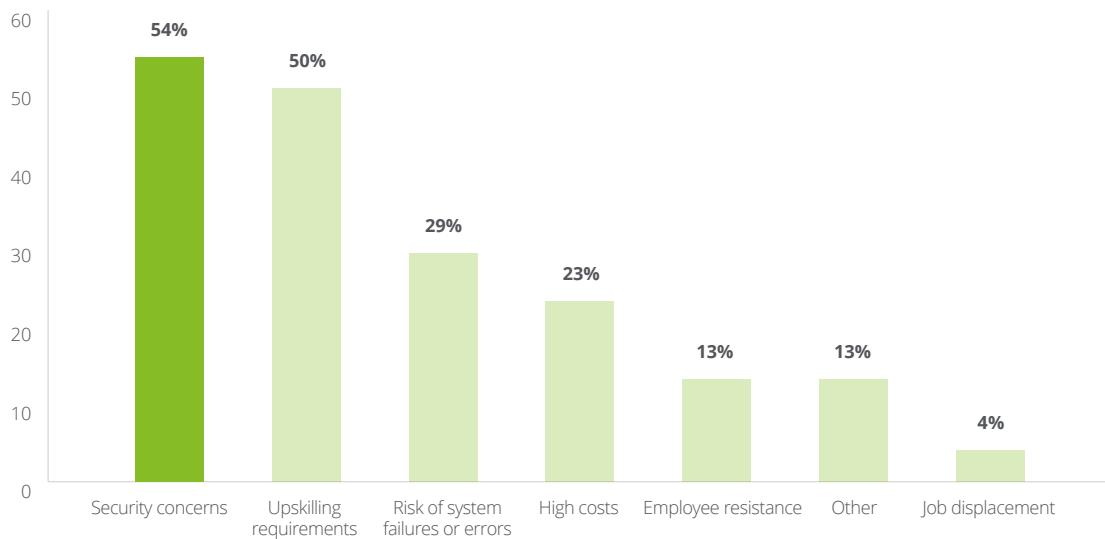
Only 14% of surveyed leaders say AI has had no positive cultural impact.

What have been the most significant positive impacts of AI integration on your organization's culture?*

*Respondents could select up to two choices

Source: Deloitte–GSA survey, 2025

No. 3: Firewalls and skill gaps: The twin speed bumps slowing AI ambition


The two biggest brakes on AI momentum, according to our survey, are security concerns and talent upskilling requirements. One is technical, the other is human, and both are critical.

In the survey, 54% of leaders cite security as their top concern when scaling AI. That's hardly surprising in a domain where IP and process recipes are among a company's most prized possessions, and their exposure could erase years of competitive advantage. As our *2024 global semiconductor outlook* stated, semiconductor assets are becoming prime targets for cyber espionage, especially in geopolitical hotspots.¹⁰ The industry is justifiably cautious about adopting AI if it increases risk further.

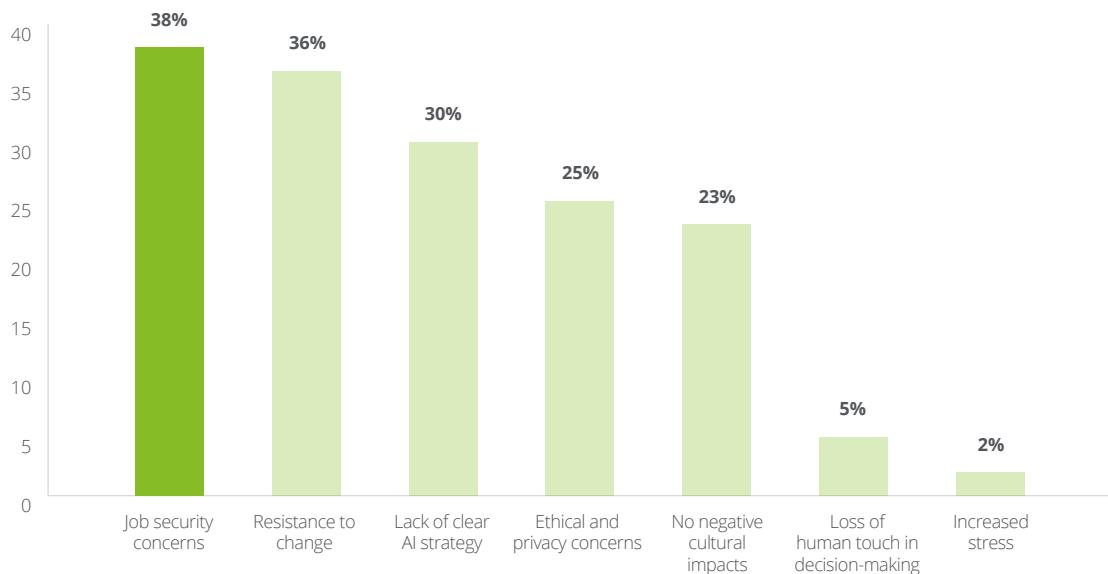
Three significant ways that AI might increase cyber risk for chip companies are potential threats via data exposure through public large language models (LLMs), security leaks within private LLM deployments, and AI-enabled cyberattacks that amplify traditional breach risks.¹¹

On the talent front, 50% of respondents say skills gaps and upskilling challenges are slowing AI deployment. That matches broader industrial reporting: Manufacturers across all sectors see training as a key bottleneck in adoption of smart systems. Although data scientists, leaders, and engineers are being upskilled, frontline workforces are not as far along.¹²

What are the primary barriers to integrating AI in your organization?*

*Respondents could select up to two choices

Source: Deloitte–GSA survey, 2025


No. 4: The human hesitation: When AI meets ambiguity and concern

Beneath the optimism around AI lies a workforce unsure of where it fits in a world that's suddenly thinking for itself. According to the survey, 38% of leaders say job security concerns are a key negative impact of AI integration, while 36% cite resistance to change.

AI is reshaping some workflows. As machines start to predict and advise, the question shifts from what's automated to how humans can add new kinds of value in a redesigned job or role, leveraging AI as an asset. In a paper published in *Systems*,¹³ the authors found

that workers experience dual forms of AI anxiety, anticipatory (fear of being replaced) and annihilation (fear of irrelevance), both of which are amplified when people perceive low control or unclear strategy. This is reinforced by another survey finding: 30% of respondents feel their organizations lack a clear AI strategy.¹⁴

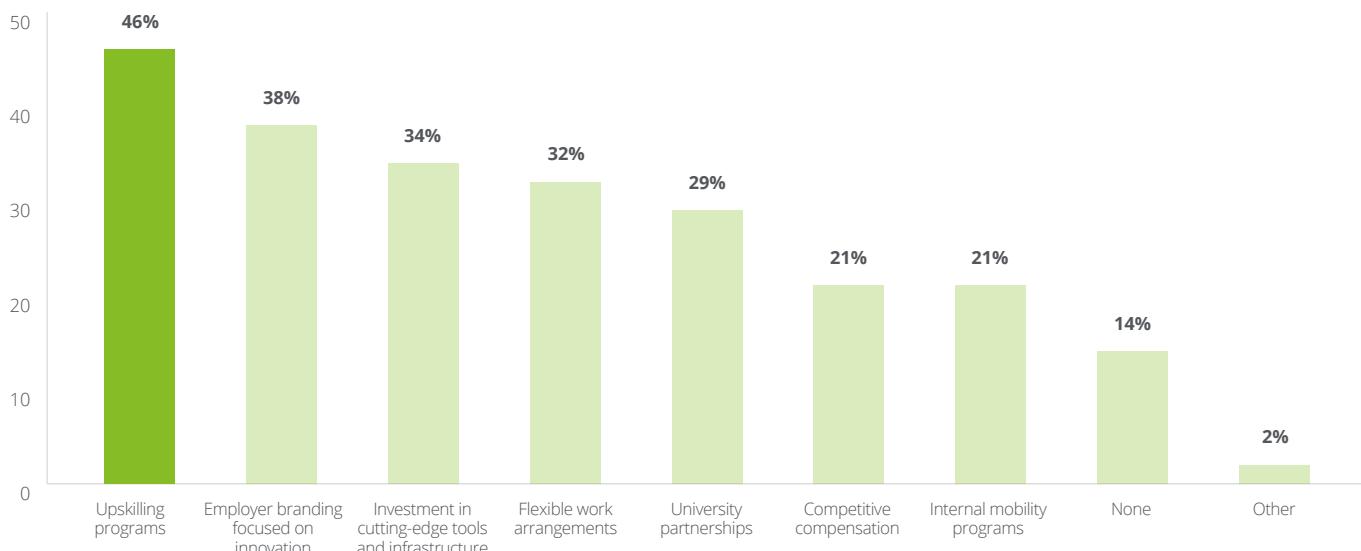
What have been the most significant negative impacts of AI integration on your organization's culture?*

*Respondents could select up to two choices

Source: Deloitte–GSA survey, 2025

No. 5: The great chip reskilling: Building a workforce ready for the AI era

AI might be the new engine of efficiency, but as mentioned earlier in this paper, people are still the transmission. The semiconductor industry's next big challenge will likely be enabling and equipping the humans who can run AI-enabled machines and systems.


Nearly half of leaders in the Deloitte–GSA survey (46%) say their organizations are investing in upskilling programs to prepare for AI-driven transformation—significantly higher than the 34% who are investing in cutting-edge tools and infrastructure. That appears to be a shift in priorities for an industry that has sometimes equated innovation with capital expenditure over investment in human capital.

Through its AI Skills for Workforce program,¹⁵ Intel is building a pipeline that connects universities, community colleges, and employees with hands-on AI training focused on practical applications in manufacturing and R&D. Samsung is taking a similar approach with its AI College and ACC STARS initiatives,¹⁶ retraining

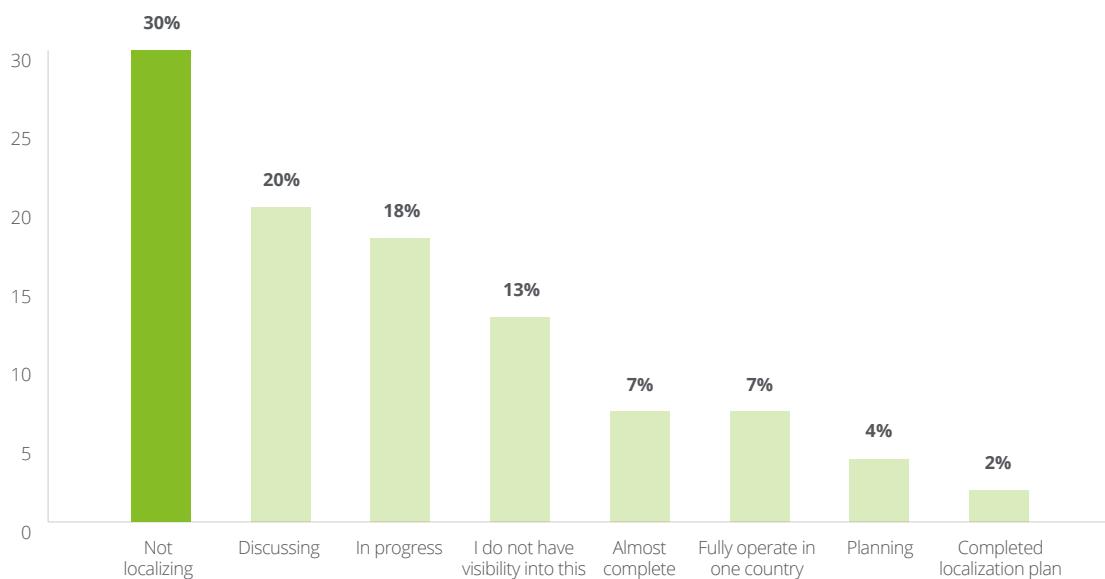
tens of thousands of employees to apply machine learning across fab analytics, testing, and logistics. AMD attributes its rapid competitive rise in AI and semiconductors to a proactive talent-development framework, including structured leadership programs, curated training, and organizational HR planning processes.¹⁷

Reskilling seems to have transitioned from being a project of the HR department to a foundational operational strategy. The fabs of the future won't just run cleaner or faster; they'll likely run smarter, because so will their people. The AI advantage will likely belong to companies that treat learning as infrastructure. In the new semiconductor stack, continuous education is a real competitive opportunity.

What strategies has your organization implemented to attract and retain talent amid AI-driven changes?*

*Respondents could select up to three choices

No. 6: The localization illusion: Why 'made here' still faces a global reality check


While AI transforms how chips are made, geopolitics is reshaping where. Localization (i.e., developing regional ecosystems) has become a major trend; boardrooms everywhere want "made here" stamped on advanced silicon. However, only 9% of survey respondents report their organizations as being fully localized or having completed major regionalization projects, and 50% report they're only at the discussion phase or not localizing at all.

Building local fab and assembly capacity in multiple regions is likely to be expensive, slow, and talent intensive. Even as the US, Europe, and Japan roll out incentive programs, key dependencies remain deeply global. According to a Deloitte perspective,¹⁸ the global semiconductor industry will need more than 1 million additional skilled workers by 2030 (or about 100,000 per year) to sustain planned capacity expansions, and this challenge spans regions.

Despite heavy investment in local recruiting and development programs, workforce gaps have slowed schedules, reinforcing that capital alone doesn't equal capacity.

Localization and sovereign initiatives are likely less about absolute independence and more about resilient interdependence, securing critical nodes while maintaining access to the global ecosystem that makes the industry possible. The semiconductor supply chain doesn't appear to be going fully local anytime soon.

Where is your organization on the localization journey?

Source: Deloitte–GSA survey, 2025

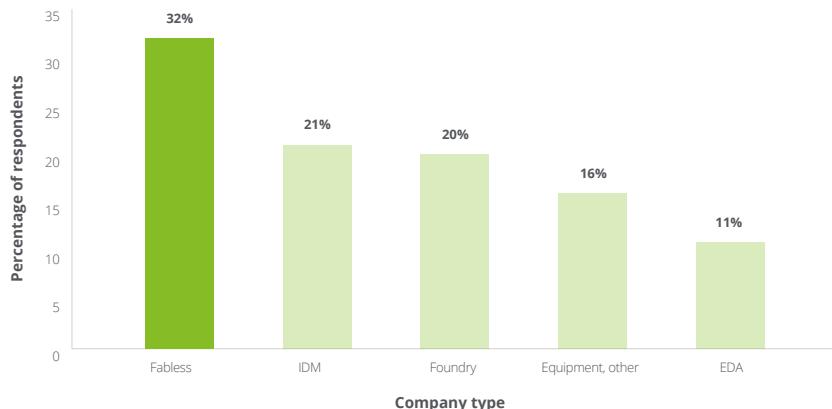
From insights to action

The findings in this study suggest the semiconductor industry's next competitive frontier won't be powered by novel technologies alone, but by leadership choices. Incremental improvement won't likely cut it. This could be an era for deliberate redesign of how companies build talent, redesign jobs and workflow, deploy intelligence, and navigate global complexity.

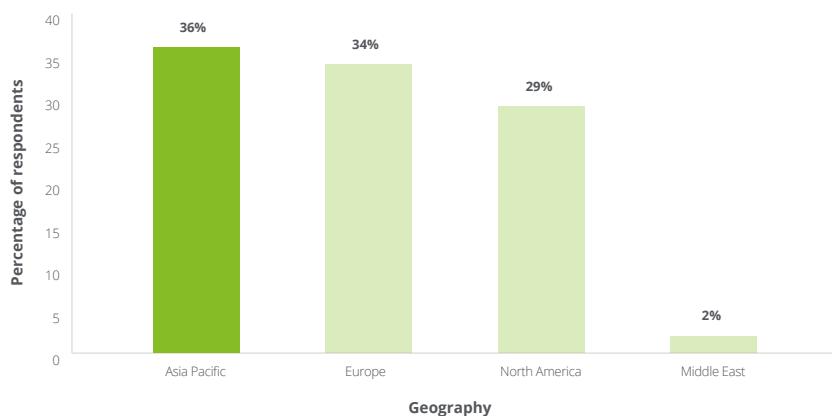
Below are three imperatives to consider for leaders ready to move from insight to action:

- 1. Prioritize workforce development and deployment.** Invest in people as aggressively as you invest in process and technology. Consider making upskilling and reskilling mission-critical infrastructure, not HR line items. Build programs that connect academia, suppliers, and in-house talent to accelerate AI fluency across all functions. Commit to assessing AI impact at the task level and use the output to decide where to leverage automation alongside humans and redesign roles to fit. The potential side effects of reduced worry and a repurposed workforce aren't just a bonus; they could be performance enablers.
- 2. Localize with talent at the center.** Treat localization as a human strategy, not just a supply chain strategy, prioritizing regions where you can source and build sustainable expertise as well as capacity. Collaborate with universities, state and local workforce development programs, and government agencies to grow semiconductor-specific skills at scale. Real resilience lies not just in where chips are made, but in the depth of talent and know-how that sustains them.
- 3. Embed AI into the core of the business.** Stop experimenting and start integrating. Move AI out of pilot purgatory and into the operating fabric of your enterprise. Use it to enhance design velocity, predict demand, and inform strategic decisions. Identify the roles and capabilities that will multiply AI's impact and invest there first. The organizations that treat AI as a structural capability, not a siloed tool, will likely capture its full value.

AI and localization are reshaping the semiconductor industry's technological, human, and geopolitical boundaries. The next decade could reward those who proactively reimagine and could be a challenge for those who retroactively adapt. The leaders who can merge intelligence with intent, and scale both technology and trust, are more likely to define the future of silicon.


Appendix

Methodology


Deloitte/GSA ran the study between June and August 2025 and received 56 unique responses from respondents across a range of company types within the semiconductor industry. In conjunction with the survey, Deloitte/GSA conducted several interviews with select industry leaders to add depth and context to the results. Respondents from fabless semiconductor companies (32%), integrated device manufacturers (21%), and foundries (20%) made up most industry categories. Geographically, the survey had global representation, with respondents nearly evenly distributed across the United States, Europe/Middle East/Africa (EMEA), and Asia Pacific (AP).

All respondents identified as senior managers or above, with 30% being in the C-suite and 59% being either directors or vice presidents. Over 73% of respondents had more than 21 years of experience within the semiconductor industry.

Respondent subsectors

Geography of respondents

Contacts

Jeroen Kusters

US Semiconductor Leader
Deloitte Consulting LLP
jeusters@deloitte.com

Duncan Stewart

Director of Global
Semiconductor Research
Deloitte Canada
dunstewart@deloitte.ca

Sergey Shchemelev

US Human Capital Semiconductor Leader
Deloitte Consulting LLP
sshchemelev@deloitte.com

Karen Weisz

US Human Capital Semiconductor Advisor
Deloitte Consulting LLP
kweisz@deloitte.com

Rebecca Greenberg

Senior Manager
Semiconductor Workforce Development
Deloitte Consulting LLP
rgreenberg@deloitte.com

Jessica Mueller

Vice President
Products & Services
Global Semiconductor Alliance (GSA)
jmueller@gsaglobal.org

Natalie Galindo

Research Analyst
Global Semiconductor Alliance (GSA)
ngalindo@gsaglobal.org

Acknowledgements

The authors wish to thank Karan Aggarwal, Karthik Ramachandran, Karen Fortunat, Nate Truman, Anthony Torres, Teresa Lewis, Angela Tatar, and Laura Winterton for their contributions to the research and insights of this report.

Endnotes

1. Synopsys, "[Achieve optimal PPA targets using AI-driven technology](#)," accessed October 29, 2025.
2. Vinod Khera, "[How AI-based Cadence Cerebrus improves performance and reduces area for T1](#)," Cadence, November 7, 2023.
3. Siemens, "[Siemens turbocharges semiconductor and PCB design portfolio with generative and agentic AI](#)," press release, June 23, 2025.
4. Data Bridge Market Research, "[Semiconductor companies integrating AI into manufacturing for improved efficiency and product quality](#)," August 2, 2024.
5. Somdeb Majumdar, Uday Mallappa, and Hesham Mostafa, "[AI alone isn't ready for chip design](#)," *IEEE Spectrum*, November 21, 2024.
6. Synopsys Inc., "[Synopsys reaches scale for AI-driven chip designs](#)," February 15, 2023.
7. Articul8, "[Intel: Manufacturing root cause analysis](#)," accessed October 29, 2025.
8. Cash Platform, "[ASML: Pioneering AI integration in semiconductor manufacturing](#)," September 6, 2023.
9. Samsung, "[Samsung teams with NVIDIA to lead the transformation of global intelligent manufacturing through new AI Megafactory](#)," press release, October 31, 2025.
10. Deloitte, [2024 global semiconductor industry outlook](#), 2024.
11. Jeff Spencer, "[AI brings speed, profit, and cybersecurity risk to the semiconductor industry](#)," Seclore, 2024.
12. Sakshi Udvant, "[How manufacturers are reskilling factory workers for AI adoption](#)," *Manufacturing Dive*, May 28, 2024.
13. Adi Frenkenberg and Guy Hochman, "[It's scary to use it, it's scary to refuse it: The psychological dimensions of AI adoption—anxiety, motives, and dependency](#)," *Systems* 13, no. 2 (2025): p. 82.
14. Sam Ransbotham et al., "[Achieving individual—and organizational—value with AI](#)," *MIT Sloan Management Review*, October 31, 2022.
15. Intel, "[The future of education technology and solutions](#)," accessed October 29, 2025.
16. Samsung, "[ACC STARS provides upskilling opportunities for Samsung employees](#)," April 2, 2024.
17. Radhika Sharma, "[How this semiconductor company schools its talent for the AI age](#)," *HRKatha*, June 9, 2025.
18. Deloitte, [The global semiconductor talent shortage](#), 2024.

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee ("DTTL"), its network of member firms, and their related entities. DTTL and each of its member firms are legally separate and independent entities. DTTL (also referred to as "Deloitte Global") does not provide services to clients. In the United States, Deloitte refers to one or more of the US member firms of DTTL, their related entities that operate using the "Deloitte" name in the United States and their respective affiliates. Certain services may not be available to attest clients under the rules and regulations of public accounting. Please see www.deloitte.com/about to learn more about our global network of member firms.

This article contains general information only and Deloitte is not, by means of this article, rendering accounting, business, financial, investment, legal, tax, or other professional advice or services. This article is not a substitute for such professional advice or services, nor should it be used as a basis for any decision or action that may affect your business. Before making any decision or taking any action that may affect your business, you should consult a qualified professional advisor. Deloitte shall not be responsible for any loss sustained by any person who relies on this article.

About GTI

The Global Semiconductor Alliance (GSA) launched the GSA Talent Initiative (GTI) to attract, develop, and retain the skilled workforce needed to support the semiconductor industry's rapid growth, projected to reach \$1.3 trillion by 2030. As semiconductors power innovation across industries, the demand for highly skilled talent is greater than ever. GTI addresses this need by expanding the talent pipeline, creating structured career pathways, and promoting inclusive leadership development. Find more information at www.designtesolution.org. Contact us at resources@gsaglobal.org.