
DevOps at
Scale

Amsterdam, 2024

Deloitte Point of View on scaling DevOps
by changing the IT delivery model

03

09

11

18

27

33

40

Contents

DevOps introduction and relevance

Changing IT delivery model

DevOps Organizational Model

DevOps Development Model

DevOps Sourcing Model

Appendices

- DevOps Services & Propositions
- DevOps Practitioners

DevOps Architecture & Hosting Model

DevOps introduction
and relevance

What is DevOps?

DevOps primary goal is to improve the flow
from an idea towards value for the customer,
enabled by an environment in which
multidisciplinary teams work collaboratively
to continuously deliver high quality solutions,
in a faster pace, that qualify for operations

Goal

Applying DevOps principles
and practices to the SDLC will benefit
both Development and Operations on

several aspects

DevOps is approach to optimize and manage
end-to-end service delivery and operations. It
applies a set of principles to transform the
entire software delivery lifecycle to introduce
new practices enabled by technology

Definition Software Delivery
Lifecycle

Introduces new practices:

• Continuous Integration

• Continuous Testing

• Continuous Delivery

• Continuous Operations

• Integrated Security

Benefits

• Increases the frequency and quality of
deployments and releases

• Improves innovation and risk-taking

• Realizes faster time to market

• Improves solution quality and
operational reliability

• Improves the Mean Time to Recover
(MTTR)

DevOps principles

• Culture of shared responsibility and
collaboration

• End-to-end ownership of services

• Multi-disciplinary teams

• Incremental value delivery

• Flow optimization in the delivery
process

• Automate (almost) everything

• Measurement of everything

• Continuous improvement

The evolution of DevOps
DevOps is the norm in software delivery and is increasingly being adopted & matured across enterprises. However, the increasing cognitive load on DevOps
teams leads to challenges when scaling DevOps enterprise-wide and demand for changes to the IT Delivery Model of organizations

Chronic conflicts
between Dev & Ops

lead to birth of
“DevOps”

Gartner predicts:
“DevOps is the future”

DevOps incorporated
into SAFe

DevOps is the new norm
for high-performing

companies
2019

2020

DevOps principles start
being applied to the IT

value stream

DevOps delivery to drive
business outcomes

56% of CIOs expect to
implement DevOps to
increase IT responsiveness
and help spur broader
innovation ambitions

Deloitte Tech Trends 2020

2024

New

The rise of the Internal
Developer Platform

It reflects a fundamental shift
in how organizations approach
software development. An IDP
is a cohesive ecosystem where
various tools and services
seamlessly integrate

DevOps Benchmaking Study

Enterprises embed more
IT functions in their
teams next to ‘Dev’ and
‘Ops’

“organizations are embedding
security (DevSecOps), privacy,
policy, data (DataOps) and
controls into their DevOps
culture and processes.”

Deloitte Tech Trends 2019

From DevOps to DevEx:
Empowering the
engineering experience

A new focus is emerging for
companies that are
dedicated to attracting and
retaining the best tech talent:
developer experience

Deloitte Tech Trends 2024

Engineering Culture
Emerges

Cognitive load of DevOps teams

Increasing Ops

“Ops” such as, DevSecOps,
CloudOps, MLOps, FinOps,
bring their own set of tools,
responsibilities, processes,
and best practices, rapidly
increasing cognitive load

DevOps Research and
Assessment (DORA)

2022 -
2024

https://www2.deloitte.com/content/dam/Deloitte/pt/Documents/tech-trends/TechTrends2020.pdf
https://humanitec.com/whitepapers/devops-benchmarking-study-2023
https://www2.deloitte.com/insights/us/en/focus/tech-trends/2019/embedding-security-devops-pipelines-devsecops.html
https://www2.deloitte.com/xe/en/insights/focus/tech-trends.html
https://docs.oobeya.io/team-insights-and-symptoms/symptoms-catalog/s2-recurring-high-cognitive-load
https://docs.oobeya.io/team-insights-and-symptoms/symptoms-catalog/s2-recurring-high-cognitive-load

Why DevOps is more relevant than ever
In today’s digital landscape, DevOps allows swiftly addressing challenges and enabling organizations to develop, deploy, and iterate on software rapidly,
efficiently, and securely, achieving increased business model adaptability

Lack of collaboration between development and
operations teams, people working in silo’s

No end-to-end integrated process with slow and
manual integration and deployment processes

Limited scalability and resource constraints

• DevOps fosters a collaborative culture between development and operations
teams, emphasizing on cross-functional teams and shared responsibilities

• DevOps encourages close cooperation during the design phase,
consideration of operational requirements

• This results in innovative yet feasible, and manageable production designs

• DevOps automates the integration and deployment process using
Continuous Integration/Continuous Deployment (CI/CD) pipelines

• By automating code integration, testing, and deployment, DevOps ensures
rapid and reliable delivery

• Organizations can release new features and updates to customers faster
and more frequently

• DevOps utilizes infrastructure as code (IaC) and cloud technologies to
automate the provisioning and scaling of resources

• Enables automatic creation and flexible scaling of infrastructure for
development, testing, and deployment needs

• DevOps promotes the use of monitoring and feedback loops, enabling
rapid issue identification and resolution, resulting in faster and more
reliable software development

Increased cognitive load

• DevOps utilizes Internal Developers Platform (IDP) providing standardized,
self-service tools and environments, simplifying complex development
processes

• By automating repetitive tasks such as provisioning resources and setting
up development environments, IDP frees developers from cognitive
burden

Indicators for DevOps Applicability
The DevOps Applicability Indicator scale help to determine if DevOps is applicable in your organization based on an evaluation of leadership style, team composition,
change rate, delivery process, business uncertainty, change willingness and product type

DevOps is
Applicable

DevOps is
Not Applicable

Leadership style

Product type

Change rate

Indicator

Delivery process

Change willingness

Team composition

Business uncertainty

Multiple teams are responsible to manage the end-to-
end lifecycle of a single product

Management trusts delivery teams to work
autonomously and only shares a product vision

Management requires direct involvement in the delivery
process and makes all decisions

An incremental delivery process that focuses on early
value delivery

Environments where IT solutions are changing rapidly

People have great affinity with software and technology
and are not change averse

Product is software that could be delivered as-a-service

Environments where IT solutions have low change rate

Product or service delivery does not require a multi
disciplinary (cross-functional) team

Your delivery process has many sequential constraints,
where outputs equal required inputs for consecutive

process steps

Desired product end-state is known and business
requirements do not often change

People have no affinity for new technologies, and are
change averse

Products are tangible, typically consisting of semi-
finished products provisioned by multiple partners that

don’t have a direct relation with each other

Desired product end-state is unknown, changing
business requirements give guidance on steering

development

Changing IT
delivery model

The changing IT Delivery Model
Overcoming challenges when scaling DevOps enterprise-wide (i.e. cognitive overload of DevOps teams and sourcing) requires four new patterns in the IT
delivery model: organizing product-oriented, leveraging Internal Developer Platforms and modular architectures and implementing a sourcing ecosystem

Organizational Model

Development Model

Architecture & Hosting
Model

Sourcing Model

Next GenEvolved Traditional

Internal Developer
Platforms

Sourcing Ecosystem

Modularity
(Microservices &

Cloud Native Services)

Product-oriented
organization

Business Unit
Organization

In-house / near shore

CI & CD

N-Tier

Hierarchical
Organization

Manual Deployments
& Big Bang Releases

In-house / offshore

Monolithic

We see that most organizations want to move from 'Evolved' to 'Next Gen’ delivery. This
document presents Deloitte’s View on ‘Next Gen’ patterns required to run DevOps

at Scale

Organizational Model

Operating model archetypes overview
Generally technology operating models will follow one of the archetypes outlined below. While there is no right or wrong model, most companies are seeking to
adopt either a ThinIT™ or product based operating model

TRADITIONAL PLAN, BUILD, RUN
MODEL

IT is segregated into core IT functional
areas, has project based technology

delivery and is focused on driving
operational efficiency

PRODUCT & PLATFORM MODEL

Agility, DevOps and modern technology is
adopted in part of the IT organisation (e.g.
digital), with the remainder of IT operating

in a traditional plan, build, run model

FULLY EMBEDDED BUSINESS
PRODUCT MODEL

Agility principles are scaled across
technology with capabilities structured

around cross-functional business-
technology product or platforms that

deliver both Change and Run. This model
is also referred to as ThinIT™

DRIVING BUSINESS VALUEENHANCING WHAT’S IN PLACEDRIVING EFFICIENCIES

Business Units

Products Products Products Products Products

Cloud infrastructure

Managed legacy estate

Service integration & orchestration

Digital Native
Platforms

Architecture
& Portfolio

IT
 B

us
. M

gm
t

Business Units Bus. Major Projects

Technology Business Relationship Management

Build RunPlan

Digital

On premise or managed data centre Cloud

Traditional Systems, Monolithic
Architecture

Business Units Bus. Major Projects

Portfolio Management

Products
(Tech Only)

Products
(Bus + Tech)

Legacy Estate Digital Platforms

On-prem / managed DC Cloud

Technology Operations

Strategy
+ Arch. Platforms

Platform
Teams

Source: Tech Tom in a Box May 2023

DevOps Organizational Model
The most advanced DevOps Organizational Model is a fully embedded business product model that allows scaling agility / DevOps principles across
technology. Capabilities are structured around cross-functional business-technology products or platforms that deliver both Change and Run

Cross-functional DevOps teams (or squads,
pods etc.) apply DevOps processes to obtain
continuous customer feedback and ensure
products meet market demands

Business and IT co-create digital solutions in
cross-functional, outcome-focused
product teams aligned by product offering
and / or domain

Technology Organization

Business Units

E2E Value Streams (Business and Enabling) with DevOps teams responsible for delivery and operations
of business products

Platform Services Teams – Build and operate core foundational infrastructure capabilities to support
the delivery of business products / platforms (i.e., Platform Services, PaaS / SaaS,
APIs & Microservices, CI/CD tooling, Developer Tools, Automation, etc.)

Cu
st

om
er

s

Additional emphasis placed on ecosystem
and sourcing to leverage evolving talent
pools (e.g., crowd), assets and solutions

Solutions are digital by design, supported by
modern cloud and micro-service
architecture. Digital-native Platforms are
built and maintained by cross-functional
Platform Teams

This is a fully embedded business product
model overview where business and
technology change capability is combined
into cross-functional product teams and value
streams with the aim of increasing business
outcome realization and reducing the cost
to deliver change Product ProductProduct

Ve
nd

or
 a

nd
 P

ar
tn

er
 E

co
sy

st
em

Technology Organization

Platform Services Team

Other Products & Platforms (e.g. Infrastructure)

A Platform provides a
technology solution that can be
leveraged and built on by
Products. Platform teams
(DevOps, Internal &/or vendors)
should aim to make their
Platform as self-service as
possible to simplify Product
delivery

Teams leverage shared
capability provided by other
Platforms, and manage delivery
dependencies with other
Products

Ve
nd

or
 a

nd
 P

ar
tn

er
 E

co
sy

st
em

Business Units

E2E Value Streams (Business and Enabling)

Product Specialist Support Resources
Cu

st
om

er
s

Value Stream
Leadership

Product Manager Delivery Lead Technical Lead

Zoom-in: DevOps Organizational Model
The model shows an example high level structure for a Value Stream, Product and Platform

Each Value Stream is led by a
group of leaders focused on
defining and realizing the
business and technical vision for a
Product Group

A Product is a named collection
of business capabilities valuable
to a customer segment (Gartner)

Each Product is supported and
enhanced end to end by one or
more multi-disciplinary DevOps
teams (internal or vendors). This
includes supporting and
maintaining systems in their
scope (or ensuring vendors
provide these services)

A Product Owner from the
Business is appointed to
prioritize product and team
backlogs, provide direction on
business needs, and provide
business acceptance of features
that are produced. Product
Owners can work with one team,
or multiple depending on context

Some resources work across
multiple DevOps teams within a
Value Stream. These are
examples only, not all Products
and Platforms will require these
roles

Value Streams are an
organizational construct to
group together similar smaller
products. This is to 1) optimize
reporting lines, 2) create a
shared identity and focus for
teams 3) optimize the flow of
work

Platform Leadership
Product Manager is titled “Platform
Manager” and is responsible for e2e
delivery and support of the Platform

Resources who support across teams (examples)

Cloud CoE

Release Manager

Operations Lead

Security Lead

Product

Solution Architect

Product
Product

Leadership

Technology Organization

Business Units

E2E Value Stream

Platform Services Team

Product

One of more DevOps
teams (Internal &/or

vendors)

Product
Leadership

Product

One or more Platform Services
Teams (DevOps, Internal &/or

vendors)

Product
Leadership

DevOps Team: Roles and Responsibilities
DevOps Teams are autonomous, service / product-oriented teams that possess multi-disciplinary capabilities. These teams will own the entirety of the software
delivery and product lifecycle, including design, delivery and operations

The Product Owner leads
the DevOps team and
directs development to
maximize business value

The Developer(s) writes and
verifies code, fixes bugs,
automates processes,
collaborates across teams, and
ensures secure, efficient, and
continuous software delivery.

The Business Analyst
engages the business for
requirements, helps defining
features, user stories & test
cases, and validates designs

The Scrum Master facilitates
the team on processes &
approach, manages
impediments and enables
continuous improvement

The DevOps Engineer* configures
the CI/CD toolset provided by the
Platform Services team within the
set guardrails to accelerate and de-
risk application delivery

The Operations Specialist(s)
executes day-to-day technology
operations (functional maintenance)
of the application, monitors
technology operations, performs
Problem Management, manages
change processes (Approves/Rejects)

The Test Engineer(s) creates
and executes test scripts,
automates tests, supports
usability testing & UAT, and
manages test environments
and test data

Business role

IT role* If the organization does not have a Platform Services Team with a Platform Engineer, the DevOps
Engineer in a DevOps team takes over the responsibilities/activities of the Platform Engineer

Technology Organization

Business Units

E2E Value Stream

Platform Services Team

Product

One of more DevOps
teams (Internal &/or

vendors)

Product
Leadership

Product

One or more Platform Services
Teams (DevOps, Internal &/or

vendors)

Product
Leadership

Platform Services Team: Roles and Responsibilities
The Platform Services Team provides a technology solution (i.e. Internal Developer Platform) that can be leveraged and built on by the DevOps teams. They
specialize in building and maintaining the core foundational technology platforms, such as core infrastructure, monitoring and logging controls, security
controls, in addition to supporting shared services and establishing centres of excellence (COEs) for innovation areas across the organization

The Platform Architect designs
and plans the underlying
platform architecture, ensures
scalability and alignment with
the business goals of the
organization

The Scrum Master facilitates
the team on processes &
approach, manages
impediments and enables
continuous improvement

The Security Engineer
builds and maintains security
protocols, identifies and solves
security vulnerabilities, conducts
regular security assessments
and responds to security
incidents

The Operations Specialist
executes day-to-day technology
operations (functional
maintenance) of the platform,
monitors technology operations,
performs Problem Management,
manages change processes
(Approves/Rejects)

The Infrastructure (e.g. Cloud)
Engineer implements and maintains
the IT infrastructure, monitors the
servers and administers the network

The Platform Engineer*
delivers, maintains and
monitors the CI/CD toolset,
implements and monitors the
platform performance and
deploys self-service
capabilities

The Platform Owner
oversees the implementation
of the platform, ensures
alignment with business goals
and manages stakeholders
expectations

* If the organization does not have a Platform Services Team with a Platform Engineer, the DevOps
Engineer in a DevOps team takes over the responsibilities/activities of the Platform Engineer

Technology Organization

Business Units

Collaboration Platform Services Team and DevOps Teams
DevOps teams should adhere to agreed standards & patterns, and consume the tooling, images, templates & automation scripts/code built by the platform team.
The sum of all technology and tooling provided by the Platform Team is encompassed in an Internal Developer Platform (IDP) to optimize the development
processes

E2E Value Streams with DevOps teams responsible for delivery and ops of business products

Platform Services Teams - Build and operate core foundational infrastructure building blocks to support the
delivery of business products / platforms

DevOps team 1

Product ProductProduct

DevOps team 2 DevOps team 3 DevOps team 4 DevOps team 5 DevOps team n+1

Define standards &
patterns

Provide self-service
(security) tooling

Build hardened
templates & images

Security & compliance
automation

</>

Guardrails are agreed on by:

Cloud Centre of Excellence
input

Product Owner/s DevOps teams

(Enterprise) Architecture

CISO / Security office

Risk/Compliance office

Example guardrails
• Cost Management
• Back-up & Disaster Recovery
• API Management
• Dependency Management
• Tooling & Tech Stack

• Security policies
• Identity & Access Management (IAM)
• Logging & Monitoring
• Infrastructure as Code (IaC) practices
• Compliance Standards

Create

Connect

Co
ns

um
e

System (e.g.
Salesforce)

System System System System System System

The Platform Services Team
provides secure and reliable
infrastructure and
environments that enable the
DevOps teams to build, test,
deploy and run their
applications successfully

Guardrails refer to a set of
predefined rules, guidelines,
and constraints that help
guide DevOps teams to build
and operate services within a
platform in a consistent and
secure manner

The DevOps teams develop new
features for the business on
systems they own, or platforms
they leverage by connecting
with the services provided by
the Platform Services Team and
consuming their created
guardrails

Guardrails are agreed on by the Cloud
Center of Excellence and the Platform
Services Teams to ensure a balance
between innovation and governance,
promoting secure, compliant, and
efficient cloud usage across the
organization

Development Model

The sum of all technology and tooling provided by the Platform Services Team to the DevOps teams is encompassed in an
Internal Developer Platform (IDP) to optimize the development processes and software delivery lifecycle

MonitorBuild & Test Release & Deploy OperatePlan & Code

DevOps

DevOps Development Model
DevOps optimizes the software delivery process by leveraging an Internal Developer Platform (including CI/CD pipeline) which automatically promotes
developer’s source code to operational solutions

DevOps puts emphasis on the
software delivery cycle and
operations…

… its practices focus on bridging the stage gate gaps between phases to accelerate
throughput by promoting more frequently with smaller products…

… next to this, DevOps practices incorporate feedback loops continuously in the
process for value creation and learning by experience

Software
Delivery
Lifecycle
Process

DevOps
Practices

Continuous
Integration

Continuous
Testing

Continuous
Delivery

Continuous
Operations

Internal
Developer
Platform

Automates almost everything - Automation drastically reduces time, effort, and risk of human errors

Security by Design - Controlled access, security services, auditing and monitoring an regular updates and patching

Everything in Version Control - Versioning ensures that no work gets overwritten and that the latest versions are built upon

Builds Quality Into the Process - The quality of every deliverable is guaranteed and errors and problems are detected early

Secure and reliable infrastructure / environments - Enable DevOps teams to build, test, deploy and run their applications successfully

DevOps practices apply continuous automation cycles throughout software development and operations processes

Streamlining of internal development
by integrating code into a shared
repository several times a day. Each
check in is then verified by an
automated build, allowing teams to
detect problems early in the cycle

Automating and integrating tests into
the software delivery chain, and
automatically executing those tests
against each build of the code base

Delivering code that is production
ready and is kept in an always

releasable state, so it can be deployed
(automatically) to production at any

given time based on business needs

Proactively managing the solution
based on feedback loops. Monitoring

and telemetry become part of the
backlog. Processes such as patching

also fall under this practice

Continuous Operations

Identifying and prioritizing opportunities, changes and fixes,
based on continuously captured end-user demand

Security practices should be integrated throughout the software
delivery lifecycle process. Security integrated in the process

increases an organization’s ability to deliver applications and services
at high velocity, securely

Continuous Integration

Continuous Testing

Continuous Planning Continuous Delivery

Software Delivery Process and DevOps practices

Internal Developer Platforms
DevOps evolvement has been a significant driver in the evolution of Internal Developer Platforms (IDPs). IDP is a platform within an organization that is
designed to streamline the software development process for developers. The rise of IDPs has been influenced by several factors

• Internal developer platforms streamline the development process,
offering integrated environments that automate and abstract
operational tasks, allowing developers to focus on writing code rather
than managing infrastructure

Internal Developer Platforms

Need for Speed and Agility

• The need for rapid scaling and agility in
software delivery has arisen due to the
fact that businesses face increasing
pressure to bring products and features to
market quickly while maintaining high
quality and compliance with regulatory
standards

• Competitive pressures and the demand
for rapid innovation have forced
businesses to accelerate their software
delivery cycles

Engineering Culture

• Engineering culture has increasingly
valued efficiency, collaboration, and
innovation, leading to the adoption of
internal developer platforms that foster
these values by reducing silos and
streamlining workflows

• This cultural shift towards DevOps
practices and continuous delivery has
made internal developer platforms
essential for maintaining a competitive
edge by enabling faster, more reliable, and
scalable software development life cycles

Cognitive Load

• The rise in cognitive load for software
developers, due to the increasing
complexity of technology stacks and the
need to manage multiple systems and
tools, has led to the creation of internal
developer platforms (IDPs)

• As software projects grew in complexity
with multi-tier architectures,
microservices, and cloud-native
technologies, there arose a need for more
enhanced tooling and resources to
manage this complexity

• These platforms become relevant in large-scale organizations because they
help manage the complexity and scale of big teams and projects by
standardizing development environments, automating workflows, and
ensuring consistency across multiple deployments

Best practices and governance

Automation

Self-service capabilities

Integration of tools

Collaboration

Resource optimization

Standardization

Internal Developer Platform features and benefits
Internal Developer Platforms typically consists of a range of tools, technologies, protocols, and best practices that are standardized across the organization to
improve efficiency, consistency, and scalability of software development projects. Some key features and benefits of IDPs are:

IDPs help standardize the development, deployment,
and operational processes across multiple teams and
projects. Standardization can reduce complexity and

the learning curve for new developers

IDPs automate repetitive tasks such as code
integration, testing, deployment, and infrastructure

provisioning, which speeds up the development cycle
and minimizes human error

Developers can initiate processes, access resources,
and manage environments on their own without

waiting for operations or other teams, fostering agility
and productivity

IDPs embed compliance, security, and architectural
best practices into the development pipeline, ensuring
that applications meet organizational and industry

standards

By using a common platform, developer teams can
collaborate more effectively, share code, and
maintain consistency across different projects

IDPs can help in optimizing resource utilization by
managing infrastructure as code and providing

insights into application performance and cost

IDPs integrate a variety of tools for version control,
continuous integration/continuous deployment (CI/CD),
monitoring, and more, providing a cohesive workflow

Developer
Control
Plane

Integration
& Delivery
Plane

Monitoring
& Logging
Plane

Security
Plane

Resource
Plane

The reference architecture of an Internal Developer Platform (IDP) can be broken down into five functional planes: Developer Control Plane, Integration &
Delivery Plane, Monitoring & Logging Plane, Security Plane and Resource Plane

The Resource Plane manages the
allocation, provisioning, and
utilization of computing resources
such as CPU, memory, storage, and
network bandwidth within the
platform

IDP Tooling Landscape – planes

The Monitoring & Logging Plane
involves tools for implementing
monitoring & logging solutions to
track the performance, availability,
and behavior of deployed
applications. It helps in identifying
issues and optimizing system
performance

The Developer Control Plane provides developers with tools to
configure and interact with their development environments,
define project-specific settings, and manage dependencies
efficiently

The Integration & Delivery Plane refers to the set of tools,
processes, and infrastructure dedicated to build, store,
configure and deploy requests from the developer control
plane. It typically includes:
• Continuous Integration (CI): automatically building and

testing code changes
• Continuous Delivery (CD): CD extends CI by automatically

deploying code changes to various environments
• Image Registry: This involves storing and managing software

artifacts in a central repository that ensures versioning,
accessibility and easily

• Platform Orchestrator: tools designed to automate the
deployment, management, and scaling of containerized
applications across a cluster of machines

• Infrastructure Control: manages and orchestrates the
underlying infrastructure resources (e.g., infrastructure as a
code facilitation)

The Security Plane includes features to
integrate security checks and
compliance policies such as access
controls, authentication mechanisms,
encryption vulnerability scanning,
cyber threats

IDP Tooling Landscape – planes and tooling

Source: https://humanitec.com

https://humanitec.com/blog/what-is-an-internal-developer-platform

ChatOps employs chat clients,
chatbots, and other real-time
communication tools to
streamline software development
and IT operations tasks and
enhance an organizations’
collaboration

Communicate and coordinate
better during incidents in real-
time, all within a chat
environment

Incident Response Automation
utilizes automated processes
and tools for rapid detection,
analysis and response to
incidents that would normally
require human intervention

Ensures that predefined
actions are taken consistently
during incidents

Self-Service Tools empower
DevOps teams to independently
manage and provision
resources, access information,
and perform routine tasks
without extensive reliance on
external assistance

Allowing team members to
deploy applications, provision
resources, and troubleshoot
issues autonomously

Reduces manual effort and
boosts the developer’s
efficiency

Key Trends influencing the Development Model
There are some key trends evolving related to the development model that empower DevOps teams. These key trends include the utilization of Code Pilot,
ChatOps, Incident Response Automation, and Self-Service Tooling.

ChatOps Incident Response Automation Self-Service Tools

Key Trend
Description

Benefits
for DevOps

Code Pilot

Code Pilot – also known as CoPilot
– is an AI-driven coding assistant
optimizing developer productivity
through code suggestions,
completion, and context-aware
recommendations, fostering
efficiency and best practices

Provide user-friendly
interfaces and predefined
workflows

Developers and operators
independently manage their
workflows, reducing
dependency bottlenecks and
enabling rapid
experimentation and
innovation

Decreases the incident
detection, analysis and
response time

Reducing the likelihood of
human errors, leading to
more reliable incident
resolution processes

Includes tasks such as
restarting services, scaling
resources, and notifying the
relevant stakeholders

Automate tasks, share
knowledge, and monitor
systems

Enables teams to execute
commands, view system
performance metrics, and
receive notifications directly in
chat channels

Enhances code quality by
facilitating best practices and
error detection, ultimately
leading to fewer bugs and
faster deployment cycles

Developers benefit from Code
Pilot’s insights and
recommendations, stimulating
continuous learning

How Code Pilot, ChatOps, Incident Response Automation, and Self-Service Tooling can be utilized in the Software Delivery Lifecycle

Example Usage of Key Trends in the SDLC

RELEASE

§ ChatOps: initiate release procedures
through chat commands and receive
notifications about successful or failed
deployments

§ Self-Service Tools: implement self-
service tools with version control
systems to automate versioning and
generate release notes based on
committed changes

MONITOR

§ ChatOps: integrate ChatOps with
monitoring tools to trigger chat
notifications for critical events or
performance degradation

§ Self-Service Tools: implement self-
service tools that allow developers and
operations teams to create personalized
dashboards. These dashboards can be
configured to display key performance
indicators (KPIs) specific to their roles or
areas of responsibility

PLAN

§ Code Pilot: translate requirements and
design of the project by generating
documentation, diagrams, or
pseudocode from natural language
descriptions

§ ChatOps: Set up a chat channel
specifically for project planning. Use
chatbots to automate tasks like assigning
tickets or scheduling meetings based on
chat discussions

CODE

§ Code Pilot: write code faster and better
by suggesting relevant code snippets,
functions, or libraries based on the
context and the goal of the developer

§ ChatOps: integrate ChatOps with code
repositories to trigger automated code
reviews upon code commits

BUILD

§ Code Pilot: suggest build configuration
options and scripts based on chosen
technologies and frameworks

§ Self-Service Tools: implement self-
service tools that allow developers to
trigger builds through the platform
without external intervention

TEST

§ Code Pilot: write unit tests, integration
tests, or end-to-end tests by generating
test cases, assertions, r mocks based on
the code logic and the expected behavior

§ ChatOps: integrate ChatOps with testing
frameworks to automatically notify
teams of test results

§ Self-Service Tools: anonymizing real
data, masking sensitive information, or
creating synthetic data based on specific
requirements

DEPLOY

§ Code Pilot: leverage Code Pilot's ability
to suggest code improvements to
optimize deployment scripts. This can
help ensure scripts are efficient and
minimize deployment times

§ ChatOps: Integrate ChatOps with
deployment pipelines to provide real-
time status updates within chat channels

§ Incident Response Automation: utilize
automated rollback procedures
triggered by incident response tools to
minimize downtime in case of
deployment issues

OPERATE

§ Incident Response Automation: use
automated incident detection and
response tools that can diagnose and fix
common issues without needing manual
intervention

§ Self-Service Tools: provide self-service
tools that allow DevOps teams to
manage infrastructure resources (e.g.,
scaling servers, restarting services)
without needing to involve separate
operations teams

O
pe

ra
tio

ns
D
ev
el
op

m
en

t

Sourcing Model

The vendor and partner ecosystem comprises
of a network of suppliers, collaborators, and

stakeholders engaged in delivering IT
solutions according a set engagement model

It involves various entities, from independent
contractors to outsourcing firms, each

contributing unique capabilities

Engagement models define the framework for

how both the organization and the
vendors/partners collaborate and interact
throughout the software delivery lifecycle

An engagement model specifies the roles,
responsibilities, and commitments of each
party, guiding the execution of tasks and

deliverables

Sourcing, in a DevOps context, refers to the
strategic approach of acquiring and managing
resources, services, and expertise to support

the software delivery lifecycle

Sourcing involves the choice for an
engagement model and selection of vendors
and partners with who the organization will

work within an ecosystem

Sourcing in DevOps context
When scaling a DevOps organization, a sourcing strategy and ecosystem becomes increasingly relevant. A well-defined sourcing model plays a crucial role in
supporting the DevOps practices by providing the necessary resources and capabilities to enable the software delivery lifecycle with speed, efficiency, and reliability

What is Sourcing? Engagement Models Vendor and Partner
Ecosystem

Sourcing: the reasons behind it
Sourcing offers a strategic advantage by providing flexibility, access to specialized skills, cost efficiency, speed, and global reach, making it an essential component
for modern DevOps organizations. Sourcing is often used to scale the DevOps organization, setup globally and/or realize 24/7 support

Benefits of sourcing

Scaling DevOps
Organizations experiencing rapid growth or

expansion of DevOps initiatives often turn to
sourcing to meet increasing demands

efficiently

Global Organization
Multinational companies with dispersed

teams and operations leverage sourcing to
harness global talent and resources

Follow the Sun
Adopting sourcing allows for continuous
development and support by leveraging

teams in different geographical locations,
ensuring 24/7 coverage

24/7

Enhanced Flexibility Sourcing offers scalability and adaptability, allowing organizations to quickly adjust resources around the clock based on delivery needs

Access to
Specialized Skills

Sourcing provides access to a diverse pool of talent and expertise, ensuring the right skills are available for each engagement phase

Cost Efficiency Sourcing models often result in cost savings through optimized resource allocation, reduced overhead, and competitive pricing

Faster time to
Market

By tapping into external resources, organizations can accelerate development cycles and bring products to market more rapidly

Global Reach Sourcing enables organizations to tap into global talent pools and establish a presence in multiple markets without geographical constraints

Sourcing engagement models
When the DevOps organization engages with vendors and partners to acquire capacity or services, it can utilize a variety of engagement models. Four
distinct models are available, each suited to the specific scope of the Software Delivery Lifecycle being outsourced.

Output Commitment
(Time for Hire)

Outcome Commitment End-2-End SDLC
(Managed Service)

Asset / Product or Platform as a
Service

Key
characteristics

Description Utilizing Time and Material (T&M)
contracts for loaned staff, ensuring
capacity and quality commitments

• Early Engagement: Utilize for initial
stages of the product where
staffing needs may fluctuate
• Flexibility: Provide flexibility to scale

resources up or down based on
project requirements
• Quality Assurance: Ensure resources

meet quality standards and
possess necessary skills for project
tasks

Commitment to project deliverables,
with ownership of specific parts (e.g.,

Development) of the Software
Delivery Lifecycle

• Clear Objectives: Define clear project
objectives and deliverables to align
with client expectations
• Commitment to Results: Take

ownership of specific project
components and commit to
delivering high-quality outcomes
• Continuous Communication: Maintain

open communication channels with
clients to ensure alignment and
transparency throughout the
project

Outsourced Product Delivery Teams
operating as independent entities or
as subsidiaries of outsourcing firms

being E2E responsible for the full
SDLC; from Dev to Ops

• End-to-End Integration: Assume
responsibility for the entire SDLC
• Cross-Functional Collaboration:

Promote collaboration between
development, operations, and
other stakeholders to ensure
seamless integration and delivery
• Continuous Improvement: Implement

iterative development processes
and continuous
integration/continuous deployment
(CI/CD) pipelines to drive efficiency
and innovation

Integration of supplier-owned assets
or services, where supplier holds E2E
accountability, promoting innovation
and efficiency (e.g. Deloitte Release

Orchestration Pipeline - DROP)

• Proprietary Solutions: Offer specialized
solutions or assets tailored to meet
specific client needs
• Supplier Accountability: Solution/Asset

consumed as a service, relieving
clients of operational burdens
• Ecosystems: Suited for matured

partners working in service
ecosystems

Engagement
Model

Sourcing scope Part of SDLC Part of SDLC E2E SDLCE2E SDLC

Sourcing of IT capabilities for products & platforms
Based on a 3-tier model of criticality and differentiating potential, product and platform capabilities should be insourced or outsourced for different
lifecycle phases. Through this process, the DevOps organization integrates into a broader Vendor and Partner Ecosystem.

Tier 1 and 2 applications generally use in-house DevOps teams for full SDLC
management. Occasional outsourcing may occur to address specific expertise or capacity
gaps. Additionally, Tier 2 might leverage dedicated teams for global setup and 24/7
support

Tier 3 applications are prime candidates for outsourcing, where an external
DevOps team manages the entire SDLC, excluding planning. Development may
remain in-house until the product or platform achieves stability

Application Tier Plan Code Test Release &
Deploy

Operate &
Monitor

Tier 1: Mission Critical
Most critical operational and commercial systems
that provide enterprise value

Insourced Insourced
(Exception: Hybrid)

Tier 2 Specialized
Systems which provide support for important
business capabilities

Insourced Hybrid

Tier 3 Commodity
Non-differentiating systems supporting non-core
business capabilities

Insourced Outsourced
(Exception: Hybrid)

Typical Roles

• Platform Manager
• Enterprise /

Domain Architects
• Product Owner
• CX / UX / UI

Designer

• Cloud /
Integration /
Software
Developer

• Cloud /
Integration /
Software
Developer

• Test Engineer

• Release Manager • Operation
Engineers

• Support Analysts

Contracting changes
Changes are needed across multiple aspects of the traditional model to enable agile ways of working through contracting

Supplier Performance Management changes

Components Traditional Model DevOps Model

Budget/Pricing

Fixed price / Time and
Materials

Time or deliverable based contracting paid as
per payment schedule without link to
outcomes or value delivered

Value Pricing Incremental pricing with a story-point /
shared-risk and reward approach, or a
combination

Scope

Contract-centred Contract includes detailed specifications and
requirements Product-centred

Contract focusses on outcomes and value
delivered, with sufficient flexibility to
accommodate devops ways of working in
which the scope is set but the solution can
evolve

Relationship

Buying a specified
product

Statement of work serves as ultimate plan for
the projects — detailed specifications,
defined prices, firm deliverable deadlines

Entering a
Relationship

Statement of work should define the
expectations of the relationship. This can
include pricing associated with a series of
performance reviews, providing a “definition of
done” and clarifying the roles of both parties

Contract
Management

Statement of Work
Management

SoW-management focused on terms of the
contract: Are the correct resources allocated,
hours accurately documented, invoices paid
on time, has the work been completed etc.

Entering a
Relationship

Continuous review of performance including
outcomes and value delivered after each
sprint in agile projects

Delivery of…

Outputs
Delivery is focussed around specified
deliverables (outputs), regardless of their
associated outcomes

Outcomes Delivery is focussed on outcomes to the
business, not individual deliverables (outputs)

Capacity
Fixed

Fixed number of supplier resources; any
changes in the resources required will
require updates to the SoW

Variable
Supplier resources can be flexed as required
under a single SoW, based on a pre-
determined rate card

Architecture & Hosting
Model

Architecture Design in DevOps
Realizing the full potential of DevOps requires a flexible, secure and agile technology stack, which often brings the need for architectural redesign

Hosting Models

Organizing your hosting models is essential
to efficiently manage resources and enable
seamless integration of development and
operations processes, ensuring scalability
and optimal utilization.

Organizations’ Cloud native landscapes are
getting increasingly complex, prompting
organization to look for ways to optimize,
such as:
- Hyper-converged infrastructures
- Containerized Infrastructure
- Serverless Infrastructure

The combination of tools, technologies, and
platforms (tech stack) is used to automate
and streamline various stages of software
enabling teams to achieve continuous
integration and delivery while fostering
collaboration and efficiency.

As the number of tools increases, so does
the complexity of configuring an appropriate
tech stack. Through careful selection and set
up plans, organizations can effectively
navigate multiple DevOps trends

Technology StackArchitecture Systems

Organizations have been moving away from
monolith structures towards more modular
systems allowing for greater scalability,
flexibility, and maintainability of software
applications.

Over the past years organizations have been
adopting (micro)service-oriented
architectures to achieve decoupling. One of
the benefits of (Micro) Service-oriented
architectures is that it creates an opportunity
for complementary trends, such as:
- Event-driven architectures

Landscape Optimization on Cloud Native Hosting Models
In the current business environment, landscapes are getting increasingly complex, prompting organization to seek optimization strategies. Here are some
primary examples how we observe organizations optimizing their landscapes depending on their selected hosting model

Virtualization

Servers

Storage
Network

Storage
Systems

Infrastructure

Operating
System

Containers

Infrastructure

On-Prem Public, Private, Hybrid or Multicloud

Containerized Infrastructure Serverless Infrastructure Hyper-Converged Infrastructure (HCI)

Hyper-converged infrastructure (HCI) combines
storage, compute, and networking components
into a single, integrated system managed through
a unified interface. Organizations can benefit
from cloud-native advantages within their on-
prem environment. HCI's integrated approach
aligns with the DevOps principle of breaking
down silos between development and
operations, fostering collaboration and
accelerating the software development lifecycle

Containerization is a method of packaging,
deploying, and running applications in
lightweight, isolated environments called
containers, allowing for consistency across
different computing environments and easier
scalability. It enhances agility, facilitates
continuous integration and deployment, and
enables more efficient resource utilization within
software development and deployment
workflows

In a serverless model cloud providers dynamically
manage the allocation and provisioning of
resources, allowing developers to deploy code in
the form of functions without needing to manage
the underlying server infrastructure. The
serverless model allows for automatic scaling,
reduced operational overhead, and the ability to
focus more on development and deployment
tasks rather than managing server infrastructure

Functions

API Gateway

Event-Driven Architecture to Achieve further Decoupling
Next to microservices architecture, we also see the complementary trend: Event-Driven Architecture. Event-driven microservices communicate
through events, helping to achieve further decoupling between services and enabling better scalability and responsiveness

Event-Driven Microservices Architecture

Organizations have
moved away from a

traditional monolithic
architecture towards

a more modular
service-oriented

architecture model

1. Each Microservice is loosely coupled
and independently deployable

2. Communication between microservices
is asynchronous through events

3. Microservices react to events and
perform their tasks accordingly without
needing to know about the internal
implementation of other services

4. If new functionalities need to be added,
a new microservice can simply
subscribe to the relevant events and
handle it independently

MS 1 MS 2 MS 3

API Gateway

User Channel Layer

DB 1 DB 2 DB 3

Event Broker

1

2 3
4

Event “Order Created”

Inventory
Service

Billing
Service

Notification
Service

Order
placed

Fullfill
order

Send
invoice

Send
email

Nowadays we see
that the modular

models are allowing
for additional &
complementary

architecture models,
such as event-driven

architecture

Example flow in Event-Driven Microservices Architecture

Why organizations are adopting

Decoupled Deployment

Improved Scalability

Enhanced Fault
Isolation

Asynchronous
communication

Flexibility & Agility

Streamlined Monitoring
and Analytics

Enhanced
Collaboration

Patterns to set up your tech stack
Selecting the right set of tools (Best-of-Suite, Best-of-Breed or hybrid) for the tech stack depends heavily on IT maturity and tech-savviness of the organization

Advantages

• Control – one central
place to manage users,
applications etc.

• User experience – one
similar user interface for
the pipeline

• One integrated platform
to process the pipeline
from

Best-of-Breed
 “Selecting the best product of its kind”

Advantages

• Flexibility – you are not depending on a one-
size-fits-all solution1

• Independent – you can pick and choose new
capabilities regardless of the core solution

Disadvantages

• Maintenance – requires knowledge of the setup
of each, and dependencies between
applications

• Vendor segregation – issue solving might cover
multiple vendors with different support models

Hybrid
 “Best of both worlds”

Advantages

• Quality cascade – iterate
upon the current setup
and consider best option
available

Disadvantages

• Effort to determine
concurrent tools – The
hybrid approach
considered a thorough
reconsideration for every
requirement between Best
of Breed and Suite

Tech-savviness

IT
 M

at
ur

it
y

Best-of-Suite
 “Bundle of end-to-end enterprise software

applications”

Disadvantages

• Standard solution – Often a bit
more rigid than best-of-breed
solutions, offering less room
for specialization

• Partner dependency – The
performance and
development of the features
depend on a single provider

• Integration focus – New
features have the objective to
integrate with the core instead
of being the best of its kind

Applicability of the toolset

Plethora of tools to select your tech stack
A tech stack encompasses programming languages, frameworks, libraries, tools, and databases utilized in the development and deployment of
software applications.

IDP Tooling Landscape displays the various
tools across the software delivery lifecycle

Zooming in on two of the planes in the IDP
Tooling Landscape: a CI Pipeline & CD
Pipeline. It can be built in various ways
considering the desired tooling patterns,
covering the same functional flow with
different tools and integrations between them

Azure DevOps covers the full extent of the CI/CD
pipeline, with no external integration required

Only a few interfaces are required as Atlassian’s suite
covers the majority of required functionality

The pipeline orchestrator (Jenkins) becomes the
central component to integrate all applications

Best-of-Suite

Best-of-BreedHybrid

Same suite, no interface

Interface between tools/suites

2. Select your tools

3. Set up your Tech Stack1. Select the set up pattern

Selecting the right set of tools (Best-of-
Suite, Best-of-Breed or hybrid) for the

tech stack depends heavily on IT
maturity and tech-savviness of the

organization

Appendices

DevOps Services and
Propositions

DevOps Service Overview
Our proposition has integrated services readily available as asset or accelerator to introduce you to DevOps, determine your DevOps appetite, or support your
DevOps transformation

INTRODUCTION TO
DEVOPS & CI/CD

ASSESSMENT OF
DEV(SEC)OPS POTENTIAL

TRANSFORMATION OF
ORGANIZATION

Objective Gain understanding of DevOps and CI/CD concepts and
realize their potential

Assess your DevOps maturity and (potential) scope of your
DevOps transformation

Deliver complex tech enabled
business transformations leveraging

the DevOps delivery model

Services DevOps Deep-
Dive Training

DevOps
Service Scoping

DevOps
CIO Lab

Dev(Sec)Ops
Quick Scan

Dev(Sec)Ops
Mat. Assessment

OKR
Dashboarding

DevOps
Transformation

Journey

Accelerate Tech
Delivery

Realized
Benefits

Training to get an
in-depth
understanding
across DevOps
dimensions:
• Organization &

culture
• Processes
• CI/CD

Technology,
Architecture &
Security
• Operating Model

&
Transformations

The Service
Scoping workshop
aims to help an
organization with
setting their
DevOps ambitions
and defining their
service entity; how
should the
organization
organize itself and
scope their
DevOps service
organization

The DevOps CIO
Lab is organized
for (new) CIO’s
that want to gain a
better
understanding of
DevOps and CI/CD
concepts and their
potential. The CIO
is triggered with
the changing IT
operating model
and its effects on
a DevOps
organization

Quick scan into an
organizations
Software Delivery
Lifecycle process
and it’s
bottlenecks and
dependencies.

Deloitte provides a
report-out on the
observations and
potential areas for
improvements

Detailed
assessment of
DevOps and CI/CD
capabilities in the
existing
organization and
architecture using
Deloitte’s DevOps
Maturity
Assessment

Dashboard that
visualizes the
objective, key
results and
corresponding
metrics of an
organization with
regards to their
Software Delivery
Lifecycle targets /
ambitions. The
dashboard is set-
up to increase
accountability and
steer on
continuous
improvements

Implement /
Mature / Scale the
DevOps Delivery
Model at an
organization
leveraging a full-
scale Deloitte
service driving and
coordinating the
complex tech
enabled business
transformation
(with a focus on
DevOps)

Implement / Use
the DevOps
delivery model to
drive large tech
enabled
transformations
(e.g. Gen AI,
Operate to
Innovate)

Investment 1 day 1 day 1 day ½ day 6 - 8 weeks 3 weeks 3 – 12 months Depending on
program

Quekel, Marlies
Senior Consultant TS&T
mquekel@deloitte.nlContact us!

DevOps Training Curriculum
C L I E N T C A S E

Global Delivery Service

• ….

SOLUTION
• Conducted a current state maturity assessment to identify Dev(Sec)Ops maturity levels, identified

bottlenecks through qualitative interviews, and subsequently created and implemented an
implementation roadmap and backlog

• Created an Objectives and Key Results (OKR) framework and an OKR dashboard with data insights
for the set objective, key results and corresponding metrics

• Developed a training curriculum, combining business and development-oriented trainings

SITUATION
• The client seeks to foster a productive and innovative engineering culture through the creation of

strong DevOps teams, where processes are streamlined, feedback is efficient and effective, and
team members feel empowered

• The client aims to shorten the time to market by enabling frequent releases (several times an
hour), reducing the time from feature review to production deployment by 50%, establishing a
robust testing strategy, and holding teams accountable on agreed objectives and key results
(OKRs)

IMPACT
• An implementation roadmap and backlog with numerous improvement items to increase the

maturity levels and accelerate the delivery service’s Software Delivery Lifecycle
• Data insights through the OKR dashboard to increase accountability and to steer on continuous

improvements
• High attendance during the trainings enhancing the organizational understanding of Dev(Sec)Ops,

culture and accelerating the Software Delivery Lifecycle

42 | Copyright © 2021 Deloitte Development LLC. All rights reserved.

DevOps Service Scoping
Assessment

C L I E N T C A S E

Medical Technology & Service Provider

• ….

SOLUTION
• Validate DevOps Ambition to challenge and (re)define their DevOps mission,

customers, services and capabilities
• Based on the organization's DevOps ambition, identify the required capabilities to

enable end-to-end ownership of products and services
• Assess the Software Delivery Lifecycle for bottlenecks and establish a wish list on

how to improve their SDLC

SITUATION
• The client wants to mature and scale their DevOps capability in general and

accelerate global platform delivery with Salesforce as launching technology
• In addition, they want to perform a reality check with Deloitte on their DevOps

plans, ambitions and potential next steps for the future

IMPACT
• Validating the DevOps ambition helped the client in reassessing and refining its

DevOps mission. It encourages a critical evaluation of current practices and identify
gaps in capabilities

• Identify the bottlenecks in the Software Delivery Lifecycle (SDLC) and provides a
roadmap for improvement, enhancing overall delivery efficiency

• Create a cohesive DevOps strategy that is aligned with company goals

• The focus on customers in the DevOps ambition and the end-to-end ownership of
services ensure a service-oriented approach, leading to products that better meet
customer needs

Dev(Sec)Ops Quick Scan
C L I E N T C A S E

National Safety Organization

• ….

SOLUTION
• Conducted a Dev(Sec)Ops Quick Scan to identify Dev(Sec)Ops areas for

improvement in products and services and in the production process outside of
the scope of the platform team

• Place these areas for improvement in a broader perspective using a reference
operating model

SITUATION
• The client has the ambition to deliver a CI/CD platform that enables developers

to deliver software faster and more efficiently by using secure and standardized
products and services.

• The Platform team is responsible for configuring and maintaining development
tools and services. This allows DevOps teams to focus on work that delivers value

• The clients wants to deliver secure software faster and easier

IMPACT
• A report-out that elaborates on the areas for improvement in various domains of

the Product & Platform operating model that are preventing the organization
from achieving its Dev(Sec)Ops ambition to develop secure software faster,
simpler and together

44 | Copyright © 2021 Deloitte Development LLC. All rights reserved.

Dev(Sec)Ops Maturity Assessment and
recommendations for further growth

C L I E N T C A S E

Global Delivery Service

• ….

SOLUTION
• Conducted a current state maturity assessment to identify Dev(Sec)Ops maturity levels, identified

bottlenecks through qualitative interviews, and subsequently created and implemented an
implementation roadmap and backlog

• Created an Objectives and Key Results (OKR) framework and an OKR dashboard with data insights
for the set objective, key results and corresponding metrics

• Developed a training curriculum, combining business and development-oriented trainings

SITUATION
• The client seeks to foster a productive and innovative engineering culture through the creation of

strong DevOps teams, where processes are streamlined, feedback is efficient and effective, and
team members feel empowered

• The client aims to shorten the time to market by enabling frequent releases (several times an
hour), reducing the time from feature review to production deployment by 50%, establishing a
robust testing strategy, and holding teams accountable on agreed objectives and key results
(OKRs)

IMPACT
• An implementation roadmap and backlog with numerous improvement items to increase the

maturity levels and accelerate the delivery service’s Software Delivery Lifecycle
• Data insights through the OKR dashboard to increase accountability and to steer on continuous

improvements
• High attendance during the trainings enhancing the organizational understanding of Dev(Sec)Ops,

culture and accelerating the Software Delivery Lifecycle

DevOps at a Global Location Platform
Provider

C L I E N T C A S E

CLM value delivery improvements based on DevOps principles

• ….

SOLUTION
• Restructure Test Management by coordinating test efforts & shift left to improve product quality

and increase speed (lead time for change)

• Streamline Release Management and deployment flow to reduce execution time (lead time for
change), improve business agility and reduce deployment errors (change fail rate)

• Setup of OKR dashboard with outcome-based (value) metrics to measure the quality of service of
the CLM platform

• The client started the implementation of their Customer Lifecyle Management (CLM) platform. This
platform is key in supporting its growth strategy and enabling roll-outs of new products and
services to the (global) market

• The client wants to accelerate their value delivery and make it measurable focusing on quality,
predictability, and traceability to support its growth strategy

SITUATION

IMPACT
• The DevOps based improvements for the CLM value delivery increased delivery speed,

improved delivery quality and improved business agility, contributing to overall business
value.

• Improved allocation of team capacity from 43% towards 60% development time

• Reduced lead time for change from months to weeks

• Stabilized CLM systems in terms of incidents and reduced P1 support requests

46 | Copyright © 2021 Deloitte Development LLC. All rights reserved.

Technology Driven Transformation in
Operations Domain

C L I E N T C A S E

Global Logistics Provider

• ….

SOLUTION
• Implement a new operating model (incl. DevOps way-of-working) in the organization by re-

structuring existing teams and processes

• Introduce new (CI/CD) technology to streamline the delivery of new upgrades across the landscape

• Establish ‘snowball effect’ in the organization to foster adoption of new way-of-working and new
technology

• Integration of multiple service partners in the ecosystem

• Execute a rollout plan to force standardization and ease of updating and maintenance

• The client needs the capability to regularly update their systems across ~180 physical locations all
over the world

• Client lacks insight in their system and operational performance and needs to align with multiple
service partners in the development process

SITUATION

IMPACT
• New DevOps teams are end-to-end responsible for the full lifecycle of a service, thereby reducing

handover times between Development and Operations

• From lacking insight to full transparency of both system and operational performance

• Updates are delivered simultaneously to multiple locations, saving a significant amount of
resources that can be used for other tasks

DevOps Practitioners

DevOps Practitioners
A big thanks to the authors of this Point of View

Donald Pondman
Sourcing Model

Senior Manager
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 83 33 02 56
dpondman@deloitte.nl

Mark Maijs
Sponsoring Director & QA

Director
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 83 89 02 14
mmaijs@deloitte.nl

Marlies Quekel
Capability Lead &
Organizational Model
Senior Consultant
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 50 07 02 16
mquekel@deloitte.nl

Thomas Grimmeissen
Architecture & Hosting
Model
Senior Consultant
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 50 15 15 99
tgrimmeissen@deloitte.nl

Ting Fung Lee
Deliver & General Support

Analyst
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 21 89 31 44
tinglee@deloitte.nl

Lianne Veenhuis
Architecture & Hosting
Model
Consultant
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 15 69 04 09
lveenhuis@deloitte.nl

Koen Meijer
Development Model

Consultant
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 29 67 37 96
kmeijer@deloitte.nl

Wouter Eversdijk
Sourcing Model

Analyst
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 31 02 40 41
weversdijk@deloitte.nl

Diana Zubchenko
Development Model

Analyst
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 24 28 51 80
dzubchenko@deloitte.nl

Sander Boot
Deliver & General Support

Analyst
Technology, Strategy &
Transformation
Deloitte Consulting
+31 6 50 01 80 99
sanboot@deloitte.nl

Additional contributors
An additional big thanks to all our colleagues that contributed to this Point of View

Lewis Young
Director

Technology, Strategy &
Transformation
Deloitte Consulting

Andries van DIjk
Specialist Director

Technology, Strategy &
Transformation
Deloitte Consulting

Jonne Kocken
Manager

Technology, Strategy &
Transformation
Deloitte Consulting

Thank you

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by guarantee (“DTTL”), its network of member firms, and their related entities. DTTL and each of its member firms
are legally separate and independent entities. DTTL (also referred to as “Deloitte Global”) does not provide services to clients. Please see www.deloitte.nl/about to learn more about our global network of member
firms.

Deloitte provides audit, consulting, financial advisory, risk advisory, tax and related services to public and private clients spanning multiple industries. Deloitte serves four out of five Fortune Global 500® companies
through a globally connected network of member firms in more than 150 countries and territories bringing world-class capabilities, insights, and high-quality service to address clients’ most complex business
challenges. To learn more about how Deloitte’s approximately 245,000 professionals make an impact that matters, please connect with us on Facebook, LinkedIn, or Twitter.

This communication contains general information only, and none of Deloitte Touche Tohmatsu Limited, its member firms, or their related entities (collectively, the “Deloitte Network”) is, by means of this
communication, rendering professional advice or services. Before making any decision or taking any action that may affect your finances or your business, you should consult a qualified professional adviser. No entity
in the Deloitte Network shall be responsible for any loss whatsoever sustained by any person who relies on this communication.

© 2024 Deloitte The Netherlands

