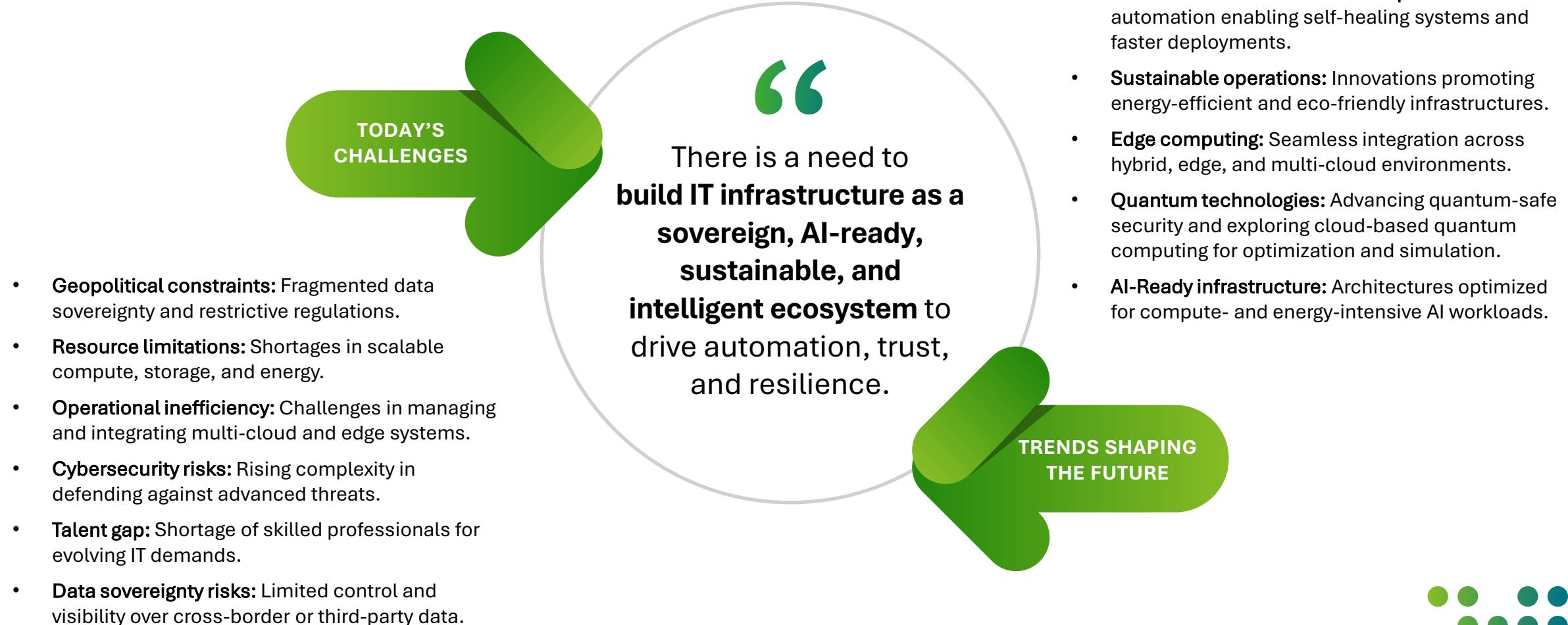


Deloitte.

Together makes progress



Future of infrastructure

Deloitte Luxembourg's point of view

November 2025

The world is changing, and infrastructure—like all technology—is evolving with it.

As IT infrastructure evolves, teams must focus on several key aspects.

Role of Infrastructure

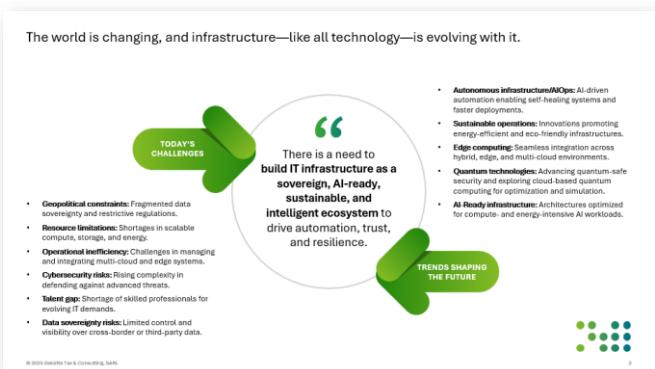
INFRASTRUCTURE 1.0

Keep-the-lights-on foundation

- Stability over speed
- On-premises, manual runbooks, ticketed changes, perimeter security, CapEx-heavy.
- Success = uptime, control, and risk mitigation.

INFRASTRUCTURE 2.0

Cloud-first growth engine


- Agility and scale as strategic levers
- Hybrid/multi-cloud, DevOps/SRE, identity/Zero Trust, OpEx/FinOps.
- Success = velocity + reliability + cost-to-serve

INFRASTRUCTURE 3.0

Intelligent platform

- Acceleration on business outcomes
- Platform engineering, AIOps and ZeroOps, IaC and autonomous ops, AI/edge-ready
- Success = time-to-value + sovereign resilience

Key considerations to define the road ahead

Eight topics to build the future of Infrastructure

Put digital sovereignty at the core

Geopolitical concerns and rising regulatory demands raise the criticality of sovereignty.

Build AI-optimized infrastructure

AI is reshaping compute and energy demand while enabling dynamic infrastructure management.

Embrace hybrid and edge architectures

Design an architecture leveraging cloud, on-premises, and edge to meet latency and data-locality requirements.

Make cybersecurity and resilience non-negotiable

With threats escalating, security cannot be bolted on.

Automate and observe relentlessly with ZeroOps

Scale and complexity require end-to-end intelligent observability.

Elevate financial governance with FinOps

The economics of cloud and AI make cost optimization a strategic concern.

Reinvent the operating model

The future of IT infrastructure cannot be managed with yesterday's ways of working.

Drive sustainability by design

The carbon footprint of digital infrastructure is under scrutiny.

1. Put digital sovereignty at the core

Digital infrastructure no longer operates in a borderless environment. Sovereignty has become a guiding principle as governments tighten rules on data residency, critical infrastructure, and technology supply chains. Initiatives like the EU's GAIA-X, GDPR, and Digital Markets Act reflect Europe's push for autonomy and trusted frameworks. Meanwhile, laws such as the U.S. CLOUD Act and China's Cybersecurity Law show how data and digital asset control is increasingly politicized. For multinational enterprises, this creates a fragmented landscape where compliance, trust, and operations must be carefully balanced.

Why it matters?

Regulatory compliance and market access

Failure to meet sovereignty rules risks fines, reputation loss, and exclusion from key markets.

Resilience and security

Over-reliance on a single hyperscaler, vendor, or region increases exposure to geopolitical, trade, supply, and cyber risks.

Trust and competitiveness

Customers, citizens, and partners expect assurance that their data and services comply with national regulations and remain under local governance.

Strategic autonomy

In critical sectors like healthcare, finance, and public services, sovereignty safeguards long-term independence and control over the digital future.

What should be done?

Data architecture and residency

Design, manage, and govern data flows, ensuring compliance with residency rules.

Data flow mapping and residency management

Sovereign cloud adoption and operation

Multi-region storage design and deployment

Critical data governance

Vendor and cloud diversification

Reduce dependency on single providers.

Multi-cloud and vendor diversification

Contractual transparency management

Vendor exit and lock-in mitigation

Interoperability and open standards

Governance and compliance by design

Embed sovereignty requirements into architecture, procurement, and operations.

Sovereignty-by-design governance

Regulatory compliance automation

Security, observability and audit alignment

Supply chain resilience

Secure supply chains and prepare for geopolitical disruptions.

Supply chain risk assessment

Trusted vendor sourcing and certification

Geopolitical contingency planning

Strategic alignment with business and regulators

Position sovereignty as a business advantage and build trust.

Sovereignty as a business enabler

Regulator and consortium engagement

Customer trust and transparent commitment

2. Embrace hybrid and edge architectures

The IT landscape has become decentralized. Enterprises now operate across on-premises, multi-cloud, and edge environments, making hybrid models the standard. This approach blends cloud scalability and innovation with on-premises control and governance for sensitive workloads. Meanwhile, edge computing is accelerating as IoT devices, connected vehicles, and real-time analytics drive the need to process data closer to its source. The result is a highly distributed infrastructure requiring seamless orchestration to ensure performance, resilience, and trust at scale.

Why it matters?

Latency and performance

Real-time applications (e.g., IoT, autonomous vehicles, healthcare monitoring, manufacturing) require near-instant edge processing.

Flexibility and agility

Hybrid architectures allow organizations to deploy workloads in the most suitable environment: cloud for scale, on-premises for control, edge for responsiveness.

Resilience and continuity

Distributed architectures reduce single points of failure and strengthen business continuity.

Regulatory and sovereignty compliance

Hybrid models support compliance by ensuring sensitive data and workloads remain within required jurisdictions.

Cost optimization

Balancing workloads across cloud, edge, and on-premises environments enables organizations to optimize cost-performance trade-offs.

What should be done?

Workload placement strategy

Classify workloads by latency, sensitivity, cost, and compliance, and deploy them in the most suitable environment.

Workload classification and placement framework

Hybrid deployment decision model

Orchestration and interoperability

Adopt container orchestration platforms, standardize APIs, and ensure E2E observability across environments.

Multi-cloud

Container orchestration

API and interface standardization

Cross-environment observability

Edge infrastructure

Deploy edge nodes for local AI inference, strengthened hardware, and automated remote management for distributed assets.

Edge node deployment

Local AI inference enablement

Remote edge asset management

Remote edge automatic patching

Zero-trust across distributed system

Apply identity-based access control, encryption, and continuous monitoring to all endpoints and environments.

Identity-based access management

End-to-end encryption

End-to-end monitoring

Distributed Compliance Enforcement

Cost and performance

Use FinOps practices and policy-driven workload placement to optimize cost-to-value across environments.

Hybrid/Edge FinOps cost tracking

Policy-driven workload optimization

Cost-to-value performance alignment

3. Automate and observe relentlessly with ZeroOps

Modern IT infrastructures—hybrid, multi-cloud, and edge-distributed—have grown too complex for manual management. Traditional monitoring tools cannot keep pace with workload scale, rapid change, or sophisticated threats. Automation and observability have become essential: automation streamlines operations and reduces errors, while observability provides real-time visibility and insights across distributed systems. Together, they enable proactive, efficient, and resilient infrastructure management.

Why it matters?

Complexity management

Hybrid and edge infrastructures generate volumes of operational data that cannot be managed manually.

Reliability and performance

Observability delivers end-to-end visibility, ensuring systems perform as expected and issues are quickly resolved.

Speed and agility

Automation speeds up provisioning, scaling, and remediation, enabling faster innovation and time-to-market.

Cost control

Automated optimization reduces overprovisioning and idle resource waste, improving efficiency and savings.

Resilience

Proactive monitoring with automated responses reduces downtime and lowers mean time to recovery.

What should be done?

Infrastructure as Code (IaC)

Adopt a tool such as Terraform to codify provisioning and configuration.

Infrastructure as code

Standardized environment configuration

Compliance enforcement

End-to-end observability

Instrument logs, metrics, and traces across the stack. Deploy unified observability platforms and AI/ML to detect anomalies.

Full-Stack telemetry (logs, metrics, traces)

Unified observability platform

AI/ML-driven anomaly detection

AI/ML-driven predictive analytics

Automated remediation

Use AIOps and event-driven automation to resolve incidents without human intervention.

Event-driven automation and AIOps

Automated scaling, failover and patch management

Self-healing orchestration integration (e.g., Kubernetes)

Observability integrated with orchestration tools

Security and compliance

Use observability data for audit-ready records and integrate threat detection with automated incident response.

Automated security policy enforcement

Audit-ready observability records

Automated threat detection and incidence response

Data-driven operations culture

Enable teams to use telemetry and automation instead of manual intervention.

Operations dashboards for IT and business

Shared visibility between Teams

Telemetry-driven decision-making culture

4. Reinvent the operating model

The traditional IT model—siloed teams, ticket queues, and manual governance—is no longer suited for the digital era. Hybrid cloud, edge, and AI workloads demand speed, resilience, and continuous delivery that legacy structures cannot support. The challenge is both organizational and technical. Infrastructure must evolve from a back-office function to a product and platform. Reinventing the operating model means rethinking teams, processes, and culture to embed agility, automation, and business alignment, transforming infrastructure into a strategic enabler.

Why it matters?

Agility

Legacy operating models slow innovation and create bottlenecks for development and business teams.

Talent utilization

Outdated roles and manual practices waste scarce skills that could be applied to higher-value, automated work.

Governance

Without modernized processes, organizations struggle to balance compliance, cost, and speed.

Cross-functional collaboration

Infrastructure, development, security, and finance must adopt integrated ways of working to deliver at scale.

Strategic relevance

The operating model determines whether infrastructure is a cost center or a business differentiator.

What should be done?

Platform teams

Adopt platform engineering principles to deliver infrastructure as a product.

Platform team design and management

Developer self-service enablement

Infrastructure-as-product roadmapping and SLAs

Continuous governance

Embed security, FinOps, and compliance into workflows, shifting from reactive audits to continuous compliance.

Embedded security, FinOps and compliance workflows

Continuous compliance operations

Policy enforcement via automation and observability

Talent and skills

Embed security, FinOps, and compliance into workflows, shifting from reactive audits to continuous compliance.

Cloud-native, automation, AI and cybersecurity upskilling

Talent attraction and retention through innovation

Automation-driven work

Spend-to-Value Benchmarking

Data-driven decision making

Leverage observability and financial data to guide resource allocation and prioritization.

Observability and FinOps-driven decision-making

Data transparency for resource prioritization

Executive dashboards and KPI alignment

Collaboration and innovation culture

Form cross-functional teams and foster experimentation with modern architectures.

Cross-functional teams

Infrastructure team as partners in innovation

Experimentation with new architectures (serverless)

5. Build AI-optimized infrastructure

AI has moved from experimentation to enterprise-scale deployment. Generative AI, large language models, and advanced machine learning are now central to business strategy across industries. These workloads place unprecedented demands on compute, storage, data throughput, and energy efficiency. Unlike traditional applications, AI training and inference require specialized infrastructure—GPUs, TPUs, accelerators, low-latency interconnects—and massive datasets spread across cloud, edge, and on-premises environments.

Why it matters?

Business growth

AI is a key differentiator for customer engagement, automation, and innovation. Without optimized infrastructure, enterprises risk falling behind.

Performance and scalability

Training and deploying large models requires massive compute and low-latency data pipelines; without scale, AI initiatives stall or underperform.

Financial impact

AI workloads are expensive, and inefficient architectures drive uncontrolled costs and undermine ROI.

Sustainability

AI's energy footprint faces increasing regulatory and public scrutiny, making performance and sustainability a critical balance.

Trust and compliance

Sensitive AI data must meet strict security, privacy, and sovereignty requirements to ensure adoption and stakeholder trust.

What should be done?

High-performance compute

Deploy GPU/TPU clusters or leverage on-demand cloud capacity.

High-performance compute provisioning

GPU/TPU cluster deployment and management

Low-latency interconnect optimization

On-demand cloud capacity

Robust data pipelines

Enable fast ingestion, processing, and distribution of large datasets.

Data pipeline design and orchestration

Scalable data lakehouse

End-to-end pipeline observability

Balance cost with value with FinOps

Track spend per workload, use auto-scaling and link costs to business outcomes.

AI FinOps cost tracking and optimization

Auto-scaling

Hybrid cloud management

Spend to value alignment

Energy-efficient and sustainable AI

Align innovation with sustainability goals, such as using renewable-powered data centers.

Energy-efficient data center operations

Advanced cooling and workload Scheduling

Carbon footprint monitoring and reporting

Security and compliance

Apply encryption and zero-trust principles while ensuring data meets sovereignty and regulatory requirements.

Zero-trust pipeline enforcement

Regulatory and sovereignty compliance for AI Data

AI Disaster Recovery

AI resilience planning

6. Make cybersecurity and resilience non-negotiable

As IT infrastructure becomes hybrid, cloud-based, and edge-distributed, the attack surface grows significantly. Organizations face sophisticated ransomware, supply chain breaches, and state-sponsored attacks. Rising downtime costs threaten business continuity, customer trust, and national security in critical sectors. In this environment, cybersecurity and resilience are no longer optional—they are strategic foundations for infrastructure in a volatile digital era.

Why it matters?

Business continuity

Even brief disruptions can trigger major financial losses, reputational damage, and regulatory penalties.

Trust and brand protection

Customers and partners expect systems and data to always remain secure and available.

Regulatory pressure

Governments are imposing stricter requirements around critical infrastructure protection and incident disclosure.

Evolving threat landscape

Attackers now leverage automation, AI, and supply chain infiltration, rendering traditional defenses insufficient.

Geopolitical tensions

Infrastructure is increasingly targeted in hybrid warfare, making resilience a national and economic security priority.

What should be done?

Zero-trust architecture

Assume breaches, enforce identity-centric security, and continuously validate access for users, devices, and workloads.

Zero-trust identity and access enforcement

Policy enforcement automation

Continuous session monitoring

Resilience and continuity

Design redundant, distributed systems. Implement automated multi-region disaster recovery with automated failover.

Redundant and distributed architecture design

Automated multi-region disaster recovery

Regular business continuity and recovery testing

Automated failover

Security across environments

Apply consistent policies across environments, including endpoints and IoT, with unified observability.

Hybrid and edge security policy extension

Endpoint and IoT device protection

Cross-environment observability and monitoring

Remote edge automatic patching

Automation and AI in defense

Leverage AIOps, SIEM/SOAR, and ML to detect, predict, and remediate threats in real time.

AI/ML-drive anomaly detection

Real-time incident detection and response (SIEM/SOAR)

Automated patch and vulnerability management

Governance and compliance

Align continuously with evolving regulations and ensure audit-ready controls.

Regulatory compliance alignment

Audit-ready security control visibility

Board-level resilience reporting

7. Elevate financial governance with FinOps

Cloud and AI adoption have reshaped IT economics. Traditional CapEx models are being replaced by variable, consumption-based spending across multiple providers, services, and business units. This offers flexibility but introduces unpredictable costs, hidden charges, and potential overspend. AI and data-intensive workloads, with their massive demand for compute, storage, and energy, amplify the challenge. Financial discipline is now as critical as technical excellence. FinOps unites engineering, finance, and business leaders to deliver cost visibility, accountability, and optimization as a core capability.

Why it matters?

Cost transparency

Cloud and AI consumption models are complex, and without visibility, overspending is inevitable.

Business alignment

Infrastructure spending should drive business outcomes and value, not be treated as mere overhead.

Scalability and innovation

FinOps enables organizations to innovate at speed while keeping costs predictable and sustainable.

Investor and management expectations

Boards and investors require financial discipline and clear ROI to justify digital transformation investments.

AI economics

AI workloads demand massive compute and storage, and without governance, costs can quickly become unsustainable.

What should be done?

Cost visibility and accountability

Deploy platforms for real-time spend visibility and allocate costs by workload and team.

Cloud and hybrid cost visibility platforms

Dashboards with tailored insights

Workload and team-level cost allocation

FinOps operating model

Form a cross-functional FinOps team with clear roles, responsibilities, and review cycles.

Cross-functional FinOps team

Defined roles and accountability

Regular cost review

Cost alignment cycles with business

Optimization practices

Apply auto-scaling and rightsizing to continuously identify and eliminate underutilized resources.

Resource rightsizing and auto-scaling

Reserved and spot instances optimization

Automated decommission of idle resources

Spend-to-value benchmarking

Observability and automation

Connect financial and operational telemetry for cost-per-service insight.

Cost-integrated observability platforms

Policy automation for cost efficiency

ML-driven spend forecasting and anomaly detection

Educate and align culture

Train engineering teams on cost-aware design and operations.

Cost-awareness trainings

Incentives for efficiency improvements

Innovation Enabled Through Financial Governance

8. Drive sustainability by design

The rapid growth of cloud services, AI workloads, and data-intensive applications is driving a surge in IT energy use and carbon emissions. Data centers already consume a significant share of global electricity, with demand set to rise further due to AI and edge computing. Meanwhile, regulators, investors, and customers are pressing for stronger environmental responsibility. Sustainability has thus become a core design principle for modern infrastructure, not a secondary consideration.

Why it matters?

Positive impact and responsibility

Sustainable infrastructure cuts carbon emissions, conserves resources, and aligns technology growth with social benefit.

Regulatory compliance

Governments are imposing stricter energy-efficiency standards and sustainability disclosure requirements for digital infrastructure.

Cost efficiency

Energy is one of the largest operational expenses in IT and efficiency gains deliver immediate benefits.

Investor and market expectations

Strong sustainability performance increasingly affects valuation, brand reputation, access to capital, and appeal to environmentally conscious customers.

Future-proofing

Embedding sustainability ensures long-term, environmentally and financially viable digital growth, including AI and edge computing.

What should be done?

Energy-efficient architectures

Optimize resources with virtualization, containerization, and right-sizing; adopt efficient cooling methods.

Workload consolidation

Legacy system modernization

Server virtualization and containerization

Advanced cooling and energy-efficient data centers

Renewable energy

Source power from renewable-backed cloud providers and explore benefits from opting for green power.

Renewable energy sourcing

Green cloud and colocation centers

Electricity purchased from green sources

AI and high-performance workloads

Schedule energy-aware workloads and run AI tasks in low-carbon regions; link carbon impact to business outcomes.

Energy-aware scheduling

AI workload efficiency monitoring

FinOps for energy and cost alignment

Low-carbon workload placement

Measurement and reporting

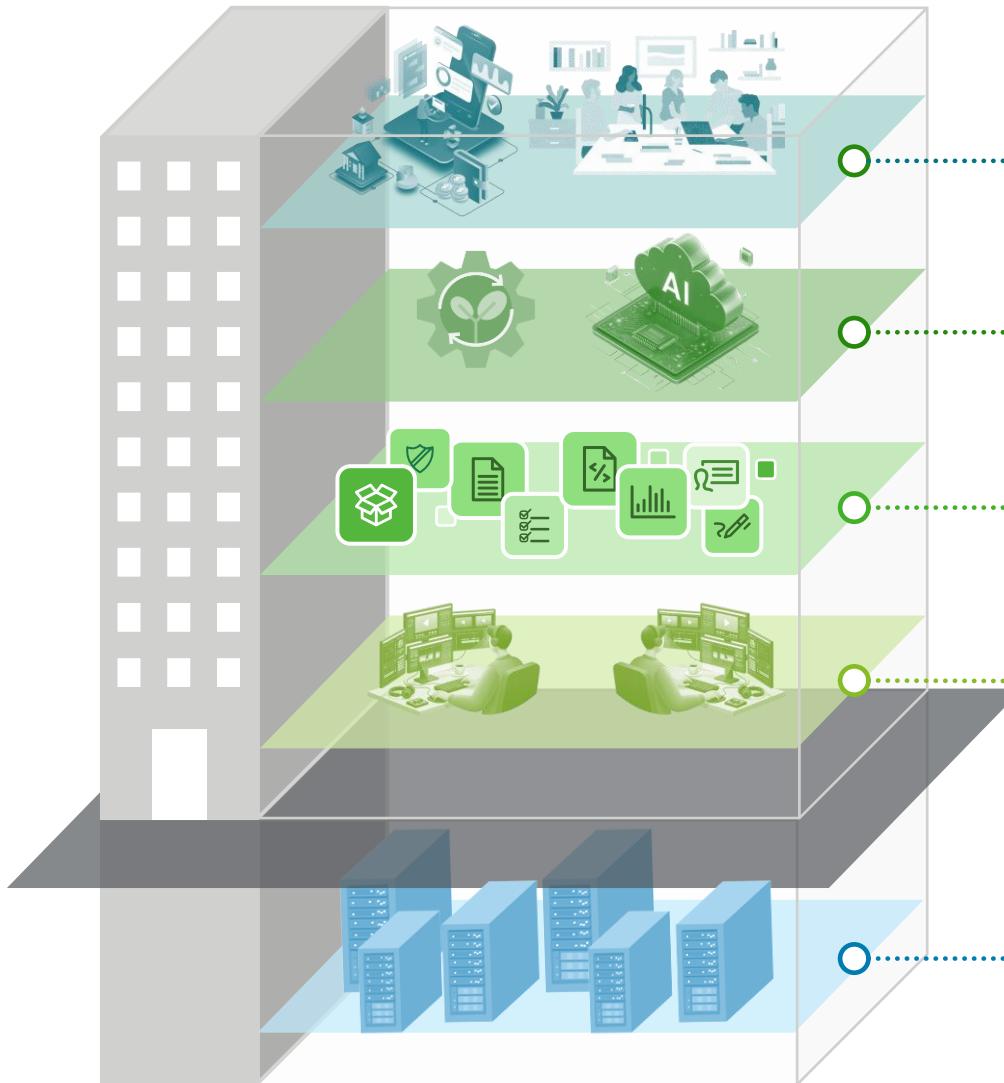
Monitor and report energy use and emissions at the workload level with dashboards for accountability.

Carbon and energy observability tooling

Standards-based sustainability reporting

Real-time sustainability dashboarding

Sustainable culture


Set sustainability KPIs and use sustainability as a driver of innovation and competitive advantage.

Sustainability KPIs in Leadership Governance

Green Coding & Efficient Infrastructure Operations

Sustainability as a Driver of Innovation

To embrace this shift, it is essential to stabilize each layer of the infrastructure...

TALENT & OPERATION

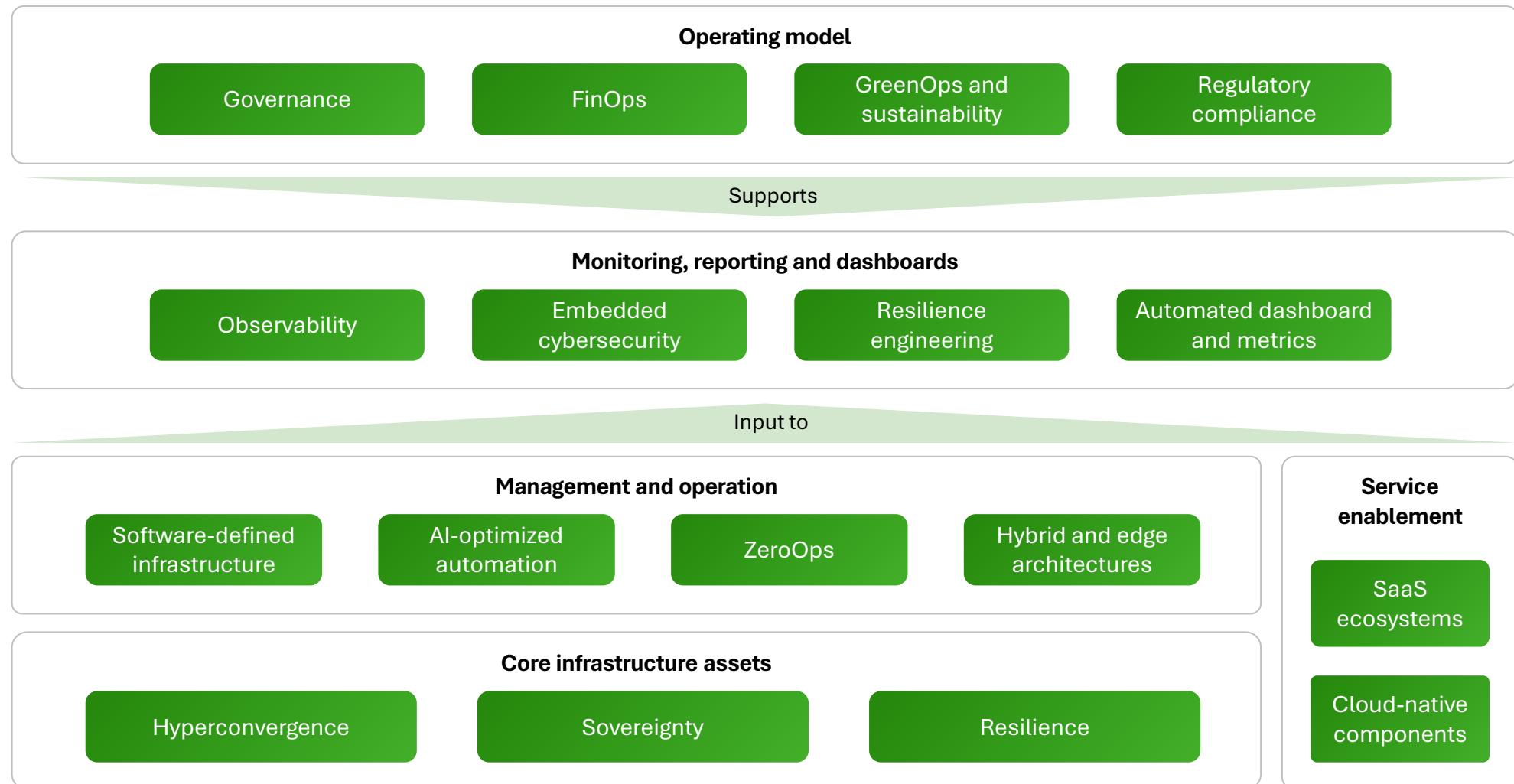
Future operations will use adaptive **operating models** and **FinOps** strategies, aligning talent, resources, and cost efficiency for seamless collaboration and optimized infrastructure governance.

TECHNOLOGY ENABLED

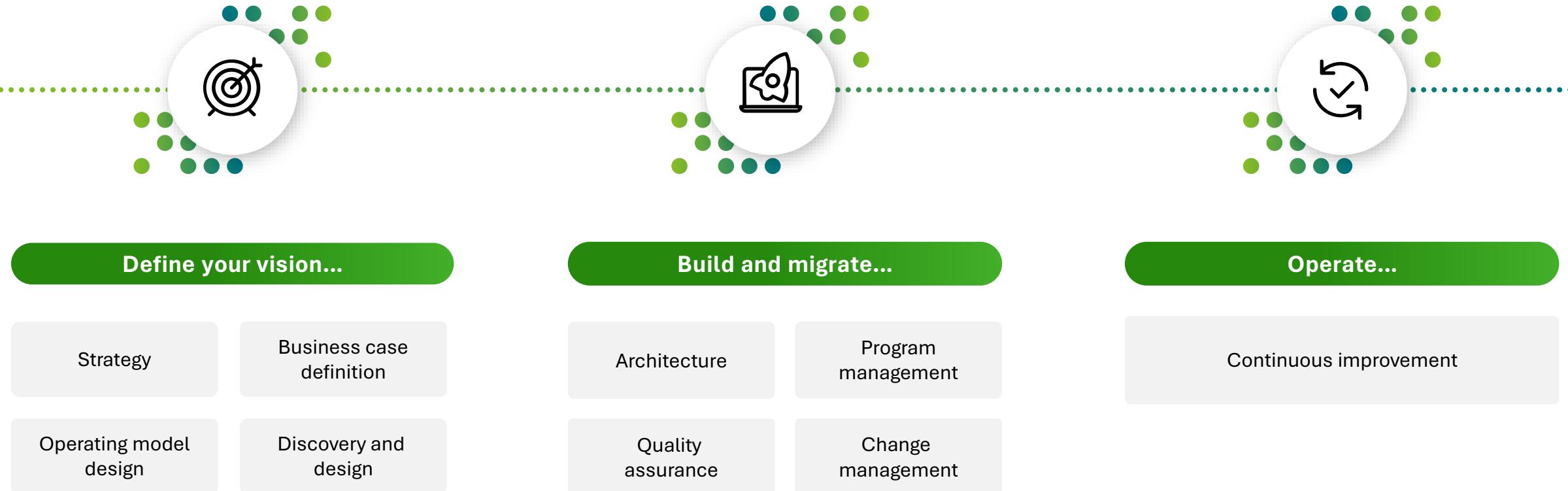
AI-driven automation, **ZeroOps**, and **sustainability** will redefine efficiency—maximizing resource use, minimizing overhead, reducing environmental impact, and boosting system intelligence.

APPLICATIONS

Applications will be architected for **hybrid and edge** environments, blending on-site and cloud resources to ensure scalability, low latency, and adaptability.


MONITORING

Infrastructure must be continuously monitored to maintain **resilience**, enhance **cybersecurity**, and enable **observability** that detects and mitigates threats before they affect operations.


PHYSICAL INFRASTRUCTURE

As data centers become increasingly distributed, **sovereignty** becomes a core principle, ensuring secure data handling while meeting compliance and geopolitical requirements.

... By implementing interconnected, complementary capabilities supported by the right technologies

How to move forward?

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited (“DTTL”), its global network of member firms, and their related entities (collectively, the “Deloitte organization”). DTTL (also referred to as “Deloitte Global”) and each of its member firms and related entities are legally separate and independent entities, which cannot obligate or bind each other in respect of third parties. DTTL and each DTTL member firm and related entity is liable only for its own acts and omissions, and not those of each other. DTTL does not provide services to clients. Please see www.deloitte.com/about to learn more.

Deloitte provides leading professional services to nearly 90% of the Fortune Global 500® and thousands of private companies. Our people deliver measurable and lasting results that help reinforce public trust in capital markets and enable clients to transform and thrive. Building on its 180-year history, Deloitte spans more than 150 countries and territories. Learn how Deloitte’s approximately 460,000 people worldwide make an impact that matters at www.deloitte.com.

This communication contains general information only, and none of Deloitte Touche Tohmatsu Limited (“DTTL”), its global network of member firms or their related entities (collectively, the “Deloitte organization”) is, by means of this communication, rendering professional advice or services. Before making any decision or taking any action that may affect your finances or your business, you should consult a qualified professional adviser.

No representations, warranties or undertakings (express or implied) are given as to the accuracy or completeness of the information in this communication, and none of DTTL, its member firms, related entities, employees or agents shall be liable or responsible for any loss or damage whatsoever arising directly or indirectly in connection with any person relying on this communication. DTTL and each of its member firms, and their related entities, are legally separate and independent entities.