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Goal of the challenge
Deloitte’s Quantum Climate Challenge 2024 
aims to explore the potential of quantum 
computers in enhancing flood forecast-
ing to improve climate resilience. Climate 
change has amplified the urgency of disas-
ter prediction in recent years. Rising tem-
peratures and shifting weather patterns 
have led to more intense floods, wildfires, 
and other extreme events. As our climate 
becomes increasingly volatile, accurate 
forecasting of extreme events can be the 
difference between life and death.

To advance disaster prediction methods, 
the challenge seeks to explore the applica-
tion of Quantum Machine Learning (QML) 
for forecasting floods along the Wupper 
River in Germany. The challenge aims to 
develop a new approach in predicting 
river floods, leveraging nascent quantum 
computing technologies. By doing so, it 
endeavors to assess the prerequisites for 
quantum hardware to significantly enhance 
disaster prediction on a larger scale and to 
gauge the potential timeframe for its imple-
mentation.  
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Due to the limitations of currently acces-
sible quantum hardware, the goal of the 
challenge is two-fold:

1. Develop and train quantum models 
for next-day flood predictions
The primary focus lies on developing and 
improving a model that uses quantum com-
puters. Due to limitations of current quan-
tum hardware, we do not expect models to 
outperform classical models at this stage.

2. Devise a path for handling more 
complex problems
Here, the focus lies on developing a concept 
for quantum or hybrid methods that may 
assist the improvement of flood prediction 
models on further advanced quantum com-
puters. The central objective is to extend 
lead times for advanced warnings and to 
enhance the efficacy of disaster prepared-
ness measures.

This document provides background infor-
mation on natural disaster occurrence 
because of climate change, the relevancy 
of flood prediction, and a brief introduction 
to QML in addition to the description of the 
challenge’s tasks.

Higher frequency and intensity of natu-
ral disasters because of climate change
The surge in global temperature has tran-
sitioned from a mere prediction to an 
unsettling reality. In 2023, we witnessed 
a noteworthy elevation in global surface 
temperature of +1.18°C compared to pre-
industrial times.1 This unfolding climate crisis 
is unequivocally a consequence of human 
activities, notably the emission of green-
house gases and the disruptive modifica-
tions inflicted upon earth’s natural climate 
system, such as rampant deforestation. The 
repercussions of escalating global temper-
atures are profound, causing disruptions in 
atmospheric and oceanic systems, resulting 
in rapidly shifting weather patterns.

One of the most pressing outcomes of 
these environmental transformations is 
the heightened frequency and intensity of 
various natural disasters. A stark illustration 
of this escalating trend emerges from the 
data reported by the United Nations, which 
documents a staggering 7,348 natural dis-
asters between 2000 and 2019. This stands 
in severe contrast to the preceding two dec-
ades, where a comparatively modest 4,212 
disasters were recorded – representing an 
almost two-fold increase in the occurrence 
of such calamities.2 The numbers under-
score the urgency with which we must 
address and rectify environmental imbal-
ances that contribute to escalating frequen-
cies and severity of natural disasters.

1 �"climate.gov Global Temperature" 2024. [Online]. Available: https://www.climate.gov/news-features/understanding-climate/climate-
change-global-temperature. [Accessed January 2024].

2 �"UNDRR: Disaster cost" 2020. [Online]. Available: https://www.undrr.org/publication/human-cost-disasters-overview-last-20-
years-2000-2019. [Accessed January 2024].

We need to develop a new resiliency 
facing the increase in natural disasters 
caused by the climate crisis.

https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature
https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019
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Extreme weather
One of the most apparent manifestations 
of climate change is the intensification of 
extreme weather events. As the atmos-
phere temperature rises, air can hold more 
moisture, leading to heavier rainfall during 
storm events. Conversely, in other regions, 
the warmer atmosphere can exacerbate 
evaporation rates of water to the atmos-
phere, contributing to drier conditions and 
increased incidences of droughts. In 1990, 
the likelihood of a severe rainfall storm in 
Texas annually stood at 1%, climbing to 6% 
by 2017 and is now projected to surge to 
18% by 2100.3

The occurrence rate of more extreme 
weather events is further influenced by sea 
surface temperature rise. The ten warmest 
recorded years have all occurred since 
1997.4 This is a notable factor in the inten-
sification of tropical storms and hurricanes 
since warmer waters provide more energy 
to these systems, potentially increasing 
their frequency and severity. Moreover, 
changes in atmospheric circulation pat-
terns have the potential to redirect storms 
along unconventional paths, occasionally 
bringing them to regions ill-equipped for 
such occurrences.

Climate change is also influencing the 
distribution and behavior of high and low-
pressure systems, which in turn affect the 
prevailing wind patterns. These changes 
can disrupt established weather patterns, 
leading to unseasonal weather events such 
as unexpected cold snaps or heatwaves.

Forecasting storms is of paramount impor-
tance to enable regions to make necessary 
preparations. Residents can take measures 
to secure outdoor belongings, reinforce 
windows and doors, and stock up on 
essential supplies - medicine, batteries, 
food, and first aid materials. In the most 
severe circumstances, evacuation may 
become necessary.

Droughts
The impact of droughts is profound, affect-
ing both human and natural systems. Agri-
cultural sectors are especially vulnerable, 
with droughts leading to reduced yields, 
crop failures, and, subsequently, financial 
losses. Additionally, aridities can exacerbate 
water scarcity issues, impacting communi-
ties and ecosystems alike. While droughts 
had an impact on human history for millen-
nia, there are climate change-related factors 
leading to vastly increased occurrence and 
severity of droughts. Changes in weather 
patterns can result in diminished rainfall and 
accelerated evaporation of surface water 
in any given area. This leads to a reduction 
in soil moisture over time, as more water 
exits the soil, and less rain replenishes it. 
Decreased snowpack and earlier snowmelt 
in mountainous regions may also heavily 
affect the timing and availability of water 
resources, particularly in regions dependent 
on snowmelt for their water supply.

It is likely that within this century, Southwest-
ern South America, Mediterranean Europe, 
and Northern Africa will face unprecedented 
aridity lasting several years.5 As droughts 
and extreme rainfall become more fre-
quent, predicting their occurrence becomes 
increasingly vital for enhancing resilience to 
impacts to humans, flora, and fauna. Timely 
prediction can enable the conservation of 
water reserves in advance and enable trans-
port to depleted regions, diminishing the 
impact during dry periods.

Wildfires
The increasingly arid landscapes are sig-
nificantly more susceptible to wildfires. 
Reduced levels of forest and soil moisture, 
coupled with climate-induced pest out-
breaks that weaken forests, create favorable 
conditions for wildfires to ignite. Their inci-
dence has surged in recent decades. From 
1984 to 2000, the average annual loss was 
only 1.69 million acres, but in the subse-
quent following 17 years, this average nearly 
doubled to 3.35 million acres.6

The repercussions of escalating wildfires 
are multifold. Ecosystems face severe 
disruptions, while human communities 
grapple with loss of life, property, and a veil 
of hazardous air quality shrouding regions 
in smoke. Prediction of wildfires can give 
emergency response teams a swift start to 
initiate containment efforts, minimizing dis-
astrous impacts to local communities.

3 �"Assessing the present and future probability of Hurricane Harvey’s rainfall," Kerry Emanuel, [Online]. Available: https://www.pnas.org/doi/
full/10.1073/pnas.1716222114. [Accessed January 2024].

4 �"An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen 
Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning 
Circulation)" frontiers. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fmars.2021.642372/full. [Accessed January 2024].

5 �"The timing of unprecedented hydrological drought under climate change" nature, Yusuke Satoh et al. 2022 [Online]. Available: https://
www.nature.com/articles/s41467-022-30729-2. [Accessed January 2024].

6 �"Increasingly frequent wildfires linked to human-caused climate change" University of California, 2021 [Online]. Available: https://www.
sciencedaily.com/releases/2021/11/211105114305.htm. [Accessed January 2024].

https://www.pnas.org/doi/full/10.1073/pnas.1716222114
https://www.pnas.org/doi/full/10.1073/pnas.1716222114
https://www.frontiersin.org/articles/10.3389/fmars.2021.642372/full
https://www.nature.com/articles/s41467-022-30729-2
https://www.nature.com/articles/s41467-022-30729-2
https://www.sciencedaily.com/releases/2021/11/211105114305.htm
https://www.sciencedaily.com/releases/2021/11/211105114305.htm


4

Deloitte’s Quantum Climate Challenge 2024 | Flood Prediction

River flooding 
Background 
This challenge focuses on floods, more 
specifically, river floods. They are natural 
events that occur when water levels in 
rivers rise and overflow their banks. These 
events can be triggered by various factors 
such as intense rainfall, rapid snowmelt, ice 
jams, and the failure of man-made struc-
tures like dams and levees. The dynamics 
of river floods involve not just meteorolog-
ical factors but also hydrological processes 
and human activities.

Climate change is intensifying the fre-
quency and severity of river floods through 
several mechanisms. As global tempera-
tures rise, the atmosphere retains more 
moisture, resulting in heightened instances 
of heavy precipitation. This has been 
observed in numerous regions where 
intense rainstorms have become more 
common, resulting in rivers receiving large 
amounts of water in short periods. This 
again leads to an increase in river floods.7 
Additionally, warmer temperatures contrib-
ute to more rapid snowmelt, particularly 
in mountainous regions, which can lead 
to sudden increases in river flow during 

spring. Furthermore, climate change alters 
weather patterns, influencing jet streams 
and fostering extreme weather events, 
which can induce prolonged rainfall or 
drought conditions. The latter harden the 
soil, reducing its ability to absorb water, 
resulting in increased runoff into rivers 
and a greater likelihood of flooding. Sea-
level rise, another consequence of climate 
change, also exacerbates river flooding, 
particularly in coastal and delta regions, 
by elevating base levels in rivers, reducing 
their capacity to accommodate overflow 
and heightening the risk of flooding.

Out of 52 floods studied, which took place 
between 1951 and 2010, 20 flood events 
were influenced by human-induced climate 
change. While earlier floods were occasion-
ally mitigated by climate change, floods that 
occurred between 2001 and 2010 were 
consistently intensified.7

Human activities exacerbate these natural 
processes. Urbanization and land conver-
sion for agricultural use have increased 
runoff by reducing the amount of land cov-
ered by vegetation that can absorb rainfall. 
Poor land management, deforestation, and 

the destruction of wetlands, which serve as 
natural sponges, also contribute to height-
ened flood risk.

The impacts of river floods are widespread, 
affecting ecosystems, human health, 
infrastructure, and economies. Flood-
waters can contaminate drinking water 
supplies, destroy crops, and cause prop-
erty damage and lead to loss of life. They 
can also displace populations, leading to 
long-term social and economic hardships. 
Mitigation strategies to reduce the impact 
of river floods in the context of climate 
change are vital. These include investing 
in flood defenses, restoring natural land-
scapes such as wetlands and forests, and 
improving water management systems. 
Adaptation endeavors, particularly the 
development of early warning systems, as 
emphasized in this challenge, are crucial. 
Besides these long-term strategies, short-
term responses are also essential. With a 
longer warning period, the loss of life and 
economical damage can be drastically 
reduced. In some cases, prolonged warning 
periods may avert floods altogether by uti-
lizing dams and reservoirs to modify water 
distribution.

7 �"Enhancement of river flooding due to global warming" University of California, 2021 [Online]. Available: https://www.nature.com/articles/
s41598-022-25182-6#:~:text=Human,streamflow%20process%2C%20the%20historical%20impact. [Accessed January 2024].

https://www.nature.com/articles/s41598-022-25182-6#:~:text=Human,streamflow%20process%2C%20the%20historical%20impact
https://www.nature.com/articles/s41598-022-25182-6#:~:text=Human,streamflow%20process%2C%20the%20historical%20impact
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Warning systems 
Predicting river floods is a complex task 
that involves the analysis of various hydro-
logical, meteorological, and geographical 
factors. Advances in technology and data 
analysis have significantly improved the 
ability to forecast such events, potentially 
saving lives and minimizing economic dam-
age.

The prediction process begins with moni-
toring rainfall patterns through radar tech-
nology and satellite imagery. Hydrologists 
use this data to estimate the amount of 
rainfall that will contribute to a river’s flow. 
They also assess the ground’s saturation 
levels, which affect how much rainfall will 
run off into the river rather than being 
absorbed by the soil. River gauge data is 
another critical component. Gauges meas-
ure the water level and flow rate, provid-
ing real-time data that can be compared 
against historical trends. This information, 
combined with rainfall data, helps to cre-
ate a picture of current conditions versus 
expected norms. Geographical information 
systems play a crucial role by mapping the 
terrain surrounding rivers. These systems 
can identify changes in the landscape, 
such as new construction or deforestation, 
which might affect runoff patterns and the 
river’s ability to absorb water.

Predictive models, which are mathematical 
representations of the river systems, inte-
grate cast datasets to simulate various sce-
narios. These models can be quite sophis-
ticated, incorporating the effects of dams, 
levees, and natural riverbanks. As they 
run, they predict how different factors will 
interact and what levels of flooding might 
occur. Meteorological forecasting is a cru-
cial part of this prediction model. Weather 
predictions help determine the likelihood 
of future rainfall and its potential impact on 
river levels. Forecasters use these models 
to issue flood warnings and alerts, afford-
ing communities to prepare or evacuate if 
necessary.

Challenges
The task of predicting river floods is becom-
ing increasingly challenging due to climate 
change. More frequent and severe weather 
patterns mean that historical data may no 
longer offer a reliable basis for prediction 
models. As a result, scientists are contin-
ually refining models to incorporate new 
data and emerging patterns. Furthermore, 
human activity, such as urban development 
and changes in land use, can alter water 
flow and absorption, necessitating continu-
ous monitoring and model adjustment.

Predictive accuracy also depends on the 
timeliness and quality of data. In remote 
areas, data collection may be more chal-
lenging, resulting in less accurate predic-
tions. Investing in data collection infrastruc-
ture, such as additional river gauges and 
enhanced satellite coverage, can improve 
prediction capabilities.

The Wupper River in Germany
This challenge will focus on developing a 
flood prediction model using the Wupper 
River in Germany as a case study. The Wup-
per River, a mid-size 116 km-long river in 
the western part of Germany, serves as the 
right tributary of the Rhine, encompassing 
a catchment basin totaling 813 km². Orig-
inating near Marienheide, it flows into the 
Rhine near Leverkusen, south of Düssel-
dorf. Notably, the region includes the city of 
Solingen, renowned worldwide for its knife 
grinding manufacturing. In 2021, the Wup-
per flooded Solingen, causing significant 
damage to many historical grinding man-
ufactories. With its history of flooding, the 
Wupper presents an interesting case study 
whose results could be used to examine 
similar sized rivers.

To simplify the challenge, the occurrence 
of floods at solely the Kluser Brücke meas-
urement station will be predicted. Kluser 
Brücke, located in the middle of Wuppertal, 
has been used to operate a dam and res-
ervoir since its construction in 1989. There 
are 30 years of water level data for Kluser 
Brücke.
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Predictive machine learning models 
Machine Learning (ML) is a subfield of Arti-
ficial Intelligence (AI) that uses algorithms 
trained on datasets to create models. 
Unlike traditional programming, where 
a programmer defines explicit rules, ML 
models can perform tasks (semi-)autono-
mously that would otherwise only be pos-
sible for humans. Additionally, algorithms 
enable the system to learn and develop 
from given data to make decisions or pre-
dictions without being explicitly programed 
to do so. Possible tasks could include cate-
gorizing images, predicting pricing fluctua-
tions, and many more.

ML is widely used in various fields, from 
medical diagnosis and financial modeling to 
speech recognition and autonomous vehi-
cles. Its ability to extract insights from large 
volumes of complex data and improvement 
of performance over time makes it a pow-
erful tool in the modern technological land-
scape. However, it also faces challenges 
such as data privacy, ethical considerations, 
and the need for large amounts of data to 
train sophisticated models.

At the core of ML are algorithms, which 
are sets of rules or instructions that the 
computer follows to process data and learn 
from it. These algorithms can be catego-
rized broadly into three types: supervised 
learning, unsupervised learning, and rein-
forcement learning.

Supervised learning
This is currently the most prevalent form 
of ML. Here, the algorithm is trained on a 
labeled dataset. This means that the data 
is already tagged with the correct answer 
or outcome. The algorithm analyzes the 
training data to learn how to make predic-
tions or decisions. An example of super-
vised learning could be an algorithm that is 
trained to recognize cats in photographs by 
being shown thousands of labeled images 
of cats and non-cats.

Unsupervised learning
Here, the algorithm is trained using data 
that is not labeled. The algorithm tries 
to find patterns and relationships in the 
data on its own. A common application of 
unsupervised learning is clustering, where 
the algorithm groups data based on simi-
larities. For example, the algorithm might 
group customers into different clusters 
based on their shopping habits.

Reinforcement learning
This is about making sequences of deci-
sions. The algorithm learns to achieve a 
goal in an uncertain, potentially complex 
environment. In reinforcement learning, an 
agent makes decisions, observes the out-
comes, and receives rewards or penalties. 
This process helps the agent learn the best 
strategies over time. A classic example is a 
computer program learning to play chess 
or a video game by continuously playing 
matches.

There are additional concepts integral 
to ML, including:

Neural networks
These are inspired by the human brain and, 
as such, consist of layers of interconnected 
nodes. Each node represents a mathemat-
ical function. Data is processed through 
the layers of nodes, enabling the network 
to learn complex patterns. Deep learning, a 
subset of ML, involves neural networks with 
many layers, which makes deep learning 
adept at processing large amounts of com-
plex data, such as images and speech.

Overfitting and underfitting
Overfitting occurs when an algorithm 
learns the training data too well, including 
the noise and outliers, making it perform 
poorly on new, unseen data. Underfitting is 
a result of an oversimplified model that fails 
to capture the underlying trend in the data.
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Time series predictions
Time series prediction using ML involves 
analyzing sequential data to forecast 
future events. This data is typically organ-
ized in chronological order. Flood fore-
casting can be classified as a type of time 
series prediction.

A key characteristic of time series data is 
its temporal dependence, meaning the 
data at a given time is often dependent on 
previous data and reoccurring patterns, if 
existing, in the previous data. ML models 
for time series prediction are designed to 
capture these dependencies.

Feature engineering is crucial in time series 
prediction. It involves creating new, tempo-
ral inspired input features, such as lagged 
values, rolling averages, and aspects of 
time itself (day of the week, month, etc.).

Time series prediction in ML faces unique 
challenges, such as dealing with seasonality 
trends and making predictions in the face 
of concept drift or changing data patterns. 
The end goal of time series prediction is to 
create a model that generalizes well and 
can make accurate predictions on future, 
unseen data.

Quantum machine learning
Quantum Machine Learning (QML) com-
bines quantum computing with machine 
learning. This fusion aims to leverage 
the computational prowess of quantum 
computers to solve complex machine 
learning problems more efficiently than 
classical computers. While there have been 
explorations of pure quantum machine 
learning algorithms, QML today typically 
describes the approach of enhancing 
classical machine learning techniques with 
quantum computing. Of the current QML 
approaches, Quantum Support Vector 
Machines (QSVMs) and Quantum Neural 
Networks (QNNs) are the two key areas 
where quantum computing is thought to 
significantly improve classical algorithms.

Quantum support vector machines
Classical Support Vector Machines (SVMs) 
are a machine learning technique for classi-
fication tasks, where they identify the opti-
mal hyperplane that segregates different 
classes in a dataset. When a hyperplane 
can’t separate datasets correctly, a kernel 
is used to cast the feature space in a higher 
dimensional manifold. Then, a hyperplane 
is created, and the points are evaluated. 
QSVMs instead utilize quantum algorithms, 
such as the quantum version of kernels, to 
easily cast data in a higher manifold.

In a QSVM, quantum states represent the 
data points and quantum operations are 
employed to compute the inner products 
necessary for the SVM algorithm. This can 
significantly reduce computational com-
plexity and potentially offer exponential 
speedups in certain applications.8 When 

dealing with high-dimensional data, clas-
sical SVMs encounter a computational 
bottleneck due to not being able to reach 
the needed dimension to create a hyper-
plane that separates the data points. This 
bottlenecking of classical SVMs highlights 
the importance of QSVMs due to their 
computational complexity reduction and 
exponential speedup capability.

Quantum neural networks
Quantum Neural Networks (QNNs) represent 
another opportunity for machine learning 
advances through quantum computing. 
Inspired by classical neural networks, QNNs 
aim to harness the principles of quantum 
mechanics for learning tasks. QNNs process 
and store information in a more intricate 
manner than classical NNs using quantum 
bits (qubits) instead of classical bits.

The intricacy of QNNs is due to their ability to 
exploit quantum superposition and entangle-
ment, leveraging the non-locality characteris-
tic of qubits, while processing a vast amount 
of data with a low overhead. This property 
is not available to classical neural networks. 
Additionally, quantum gates, analogous to the 
linear layering of classical networks, manipu-
late these qubits and enable complex trans-
formations during the learning process.

Overall, QNNs have the potential to revolu-
tionize deep learning by offering solutions 
to problems that are currently difficult for 
classical neural networks. Problems suited 
for QNNs could include handling datasets 
with intrinsic quantum properties, solving 
complex optimization problems quickly, and 
many more.

8 �"Quantum algorithms for supervised and unsupervised machine learning" Seth Lloyd, Masoud Mohseni, Patrick Rebentrost, 2013. 
[Online]. Available: https://arxiv.org/pdf/1307.0411.pdf. [Accessed January 2024].

Framework Publisher Basis

Qiskit-Machine-Learning IBM Qiskit

TensorFlow Quantum Google Cirq

Q#Machine Learning Microsoft Q# Quantum Developer Kit

Pennylane Xanadu Pennylane (useable with Amazon Braket)

Tab. 1 – Overview of Quantum Machine Learning FrameworksQuantum machine learning frameworks
Guides and tutorials on the most used, 
freely available frameworks for using and 
creating QML models can be found here:

https://arxiv.org/pdf/1307.0411.pdf
https://qiskit-community.github.io/qiskit-machine-learning/tutorials/01_neural_networks.html#
https://www.tensorflow.org/quantum
https://learn.microsoft.com/en-us/azure/quantum/how-to-adapt-qiskit
https://pennylane.ai/qml/quantum-machine-learning/
https://docs.aws.amazon.com/braket/latest/developerguide/hybrid.html
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Challenge tasks
Quantum machine learning models can 
be created using hybrid classical-quantum 
computation in a myriad of ways. To reduce 
the complexity of the challenge to a level 
that is manageable in the given time frame, 
we have simplified the problem.
It is highly encouraged to analyze the prob-
lem as a whole and deviate from these 
simplifications to further improve perfor-

Task 1A Create a quantum algorithm, 
a (hybrid) quantum machine learning 
model, that predicts if a flood is hap-
pening on each day of 2023. To reduce 
the complexity, you can assume that 
a water level above 90 cm is a flood. 
Run your algorithm on a quantum 
computer or simulator and provide 
information on the resource require-
ments of your solution (e.g., total 
number of shots, compute time, etc.)

Task 1B Evaluate your solution, 
describing the advantages and dis-
advantages of your approach(es). 
Evaluate the performance differences 
between your solution and classical 
approaches. Use at least the following 
evaluation criteria: 

Ideas to increase problem complexity:
	• Collect additional publicly available data 
that might be useful for the model and 
integrate them. 

	• Increase the time span between when 
a flood forecast is made and the time of 
the flood. You could, for example, predict 
the next three/seven/ten days at any 
point in time. 

	• Training time

	• Accuracy of all predictions for the 
year 2023, including:
	– In relation to a classification:

	– False-Positive
	– True-Positive
	– False-Negative
	– True-Negative 

	– In relation to a water level 
forecast:
	– Mean-Absolute-Error
	– Mean-Squared-Error

	• Learning curve (for models using 
epoch training) 

Task 2A Conceptualize a quantum 
or hybrid solution that will scale the 
calculation to achieve a more general/
advanced model.

	• Predict water levels or water level inter-
vals instead of a binary outcome. 

	• Add additional evaluation criteria that 
might be useful.

mance of the calculations and the fit of the 
calculated solution. It is sufficient to solve 
the challenge using the simplifications. 
However, producing a solution to a higher 
complexity problem will raise the likelihood 
of achieving a good ranking.

Details on how to access the simulators 
and quantum computers ( on IBM Quan-
tum, Nvidia, Amazon Braket and D-Wave) 

as well as the data provided by the Wup-
perverband can be found on the Resources 
tab of the challenge webpage. The details 
and data are only visible for registered par-
ticipants of the challenge.

Once registered for the challenge, to suc-
cessfully complete this challenge, you need 
to perform the following tasks:

Task 2B Discuss the requirements 
for your solution to 2A to be imple-
mented in real quantum computers. 
Give an estimate for the time horizon 
at which implementation may become 
feasible. Examples of requirements 
include: the number of logical qubits 
needed, coherence times, etc.

Task 3 Compile a report (as a single 
*.pdf file) that includes a short prob-
lem statement, your solution, and 
a detailed explanation for how you 
solved it. Give an overview of your 
research and the resources used dur-
ing the challenge, provide *.csv or *.xls 
files for all data resulting from the 
calculations in your report and supply 
your comprehensively commented 
code (in either a repository or file.)
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