

Virtual Workshop STUDY ON MEASURING THE APPLICATION OF CIRCULAR APPROACHES IN THE CONSTRUCTION INDUSTRY ECOSYSTEM

23 March 2023

Measuring the application of circular approaches in the construction industry ecosystem

Stakeholder workshop

23 March 2023

Philippe Moseley, Policy Officer, Construction Unit, DG GROW

Policy context

Political imperative

European leadership

Circular Economy Action Plan The European Green Deal

Changing legislative context

Environmental impacts of construction

Opportunities of a shift from linear to circular economy

The EU construction industry ecosystem

- 9.6% of EU Gross Value Added (EUR 1 158 billion)
- 25 million jobs, 5.3 million firms
- Low productivity
- Low innovation uptake
- High environmental impact

Annual Single Market Report 2023: <u>https://ec.europa.eu/docsroom/documents/48877</u>

Transition Pathway

Transition pathway: <u>https://europa.eu/!FcbxNr</u>

- Introduction
- 1. Competitiveness
- 2. Skills and talent
- 3. Enabling framework
- 4. Research, Innovation, Technology
- 5. Funding
- 6. Towards a fair and safe built environment
- Annexes

New study on end-of-waste criteria

- "Background data collection for future EU end-of-waste criteria of construction & demolition waste"
- Ends March 2024
- JRC scoping study March 2022 already identified aggregates & mineral wool as priority CDW streams. <u>https://europa.eu/!t7WKdK</u>

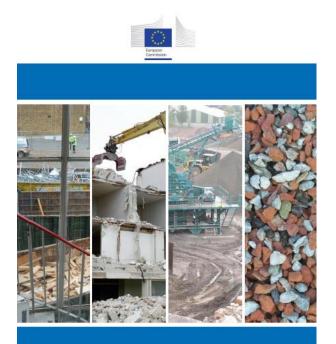
High Level Construction Forum

20 April: session on the green transition of construction (online)

- 2050 Whole life carbon roadmap for buildings: presentation of modelling results and work to develop the roadmap
- Study on measuring circular approaches
- EU end-of-waste background data study
- Sign up for HLCF mailing list: <u>https://europa.eu/!dXKubx</u>

EU Taxonomy for sustainable activities

- Objective: direct investments towards "sustainable" projects
- Climate Change Adaptation & Mitigation (in force since January 2022)
- Water, Biodiversity, Pollution, Circular Economy (expected soon)



Guidance

- EU Construction & Demolition Waste Management Protocol
- Available in 15 languages
- <u>https://ec.europa.eu/docsroom/documents</u> /20509/
- Revision being planned

EU Construction & Demolition Waste Management Protocol

September 2016

Thank You! Merci! Gracias! Diolch!

https://single-marketeconomy.ec.europa.eu/sectors/construction/ construction-transition-pathway_en

Except where otherwise noted, this presentation is © European Union and is licensed under the CC BY 4.0 license.

INTRODUCTION

Agenda

Timing	Agenda item	Speakers	
9:30-9:35	Welcome by the Commission	Philippe Moseley (DG GROW)	
9:35-9:40	 Scope and goal of the workshop Project overview Objective of the workshop and instructions for the workshop Interactive session on circularity approaches 	Study team	
09:40-09:55	 2. Interim results Summary from project team of the shortlisted indicators and other interim findings 	Study team	
09:55-10:25	 3. Products/ materials focus: Presentations: DG GROW: Presentation on CPR, ESPR and « the others » ITACA protocol: a possible path to sustainability in the governance of the building process 	1. Manfred Fuchs (DG GROW) 2. Massimiliano Bagagli (ITACA) Study team	

• Interactive session on product/material indicators

INTRODUCTION

Agenda

Timing 10:25-11:20

Agenda item

4. Buildings/infrastructure focus

- Presentations:
 - 1. Circular indicators for infrastructure: The Dutch approach
 - 2. Presentation of BTPFlux and the PEMD Platform
 - 3. Example of Level(s) implementation: Circular renovation of a corporate office
 - 4. Towards circularity in Statsbygg
- Interactive session on building/asset indicators

11:20-11:30 Coffee break

11:30-12:00 5. Organisation level & urban level focus

- Process/organisation level presentation:
 - 1. Circular approaches at process / organisation level
- Interactive session on organisation level indicators
- Urban/ regional level presentation:
 - 1. Be Circular: Reuse in circular building sites
- Interactive session on urban level indicators

12:00-12:25 6. Panel discussion on:

- Overall insights on circularity indicators for the circularity industry
- Overall insights on drivers and barriers

Evert Schut (Dutch Ministry of Infrastructure and Watermanagement), Kaie Small-Warner (CIRCuIT), Christophe Sykes (Construction products Europe, Circular Economy Club), Sue Arundale (EFCA)

Study team Philippe Moseley (DG GROW)

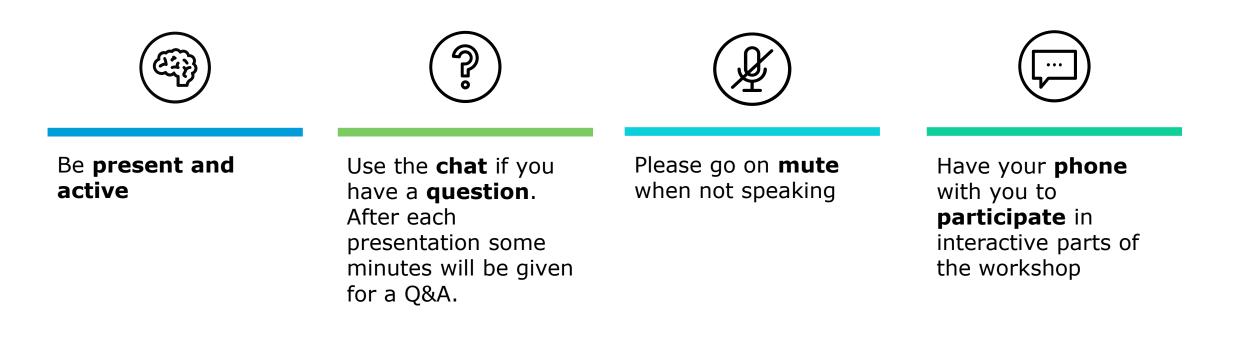
Speakers

 Evert Schut (Dutch Ministry of Infrastructure and Water management)
 Edouard Sorin (CSTB)
 Ignasi Cubina (Eco Intelligent Growth/ Construcía Group)
 Lars Petter Bingh (Statsbygg)

Study team

1. Wouter Schik (Arcadis)

2. Yannick D'Otreppe (Brussels Environment)


Study team

12:25-12:30 7. Closing

INTRODUCTION

Workshop set-up

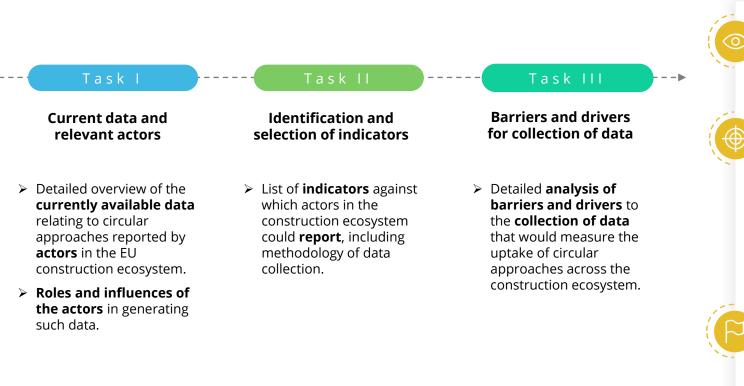
To ensure active and effective participation

Tour de table – Today's facilitators

Deloitte and Reusefully

Luc Chalsège

- Project Manager
- Deloitte Belgium



Indi de Graaf

- Senior consultant
- Deloitte Belgium

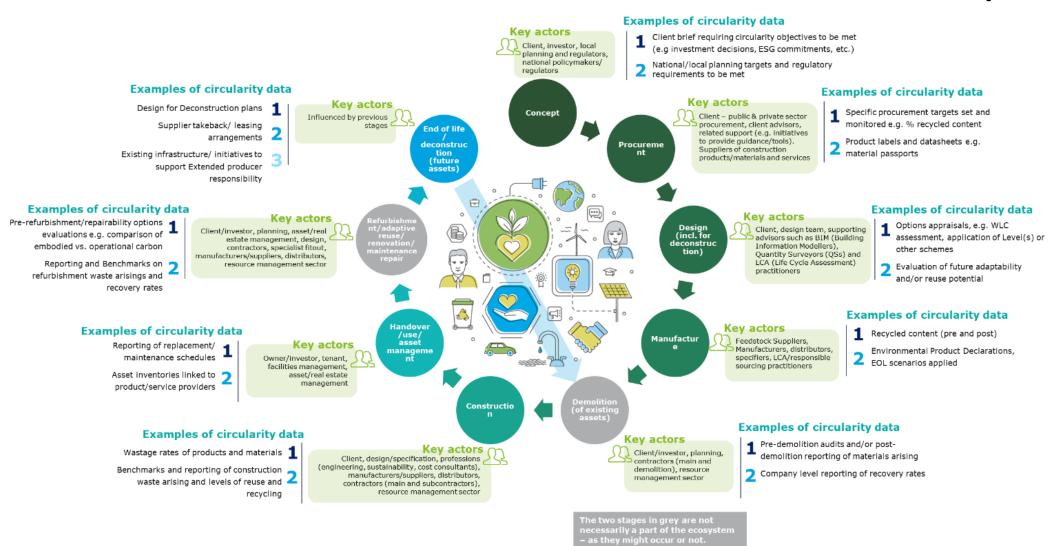
Project Overview

Study on Measuring the application of circular approaches in the construction industry ecosystem

The final study report will be delivered in Q2 2023.

Purpose

Support the **uptake of circular approaches in construction** by defining indicators and providing an overview of the status quo of circular approaches in the construction industry.


\bigoplus

- Key objectivesAnalyse the role and ability of actors in the construction
- ecosystem to report relevant data.
 Measure the uptake of circular approaches in the construction
- Gain insights into the status quo of the circular economy in the
- Gain **insights into the status quo of the circular economy** in the ecosystem across design, construction, operation and end of life processes.
- **Analyse results and provide conclusions** about the availability of information on the circular economy in construction.

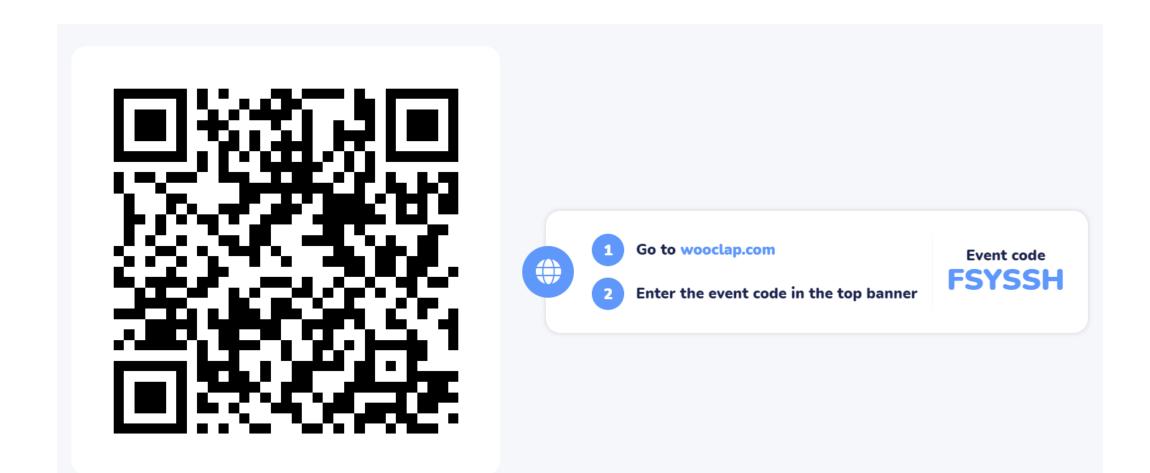
Methodological approach

- Desk research
- In-depth interviews and surveys
- Workshops
- Outreach activities
- Assessing inputs and reporting recommendations

The construction value chain, its actors and circularity data

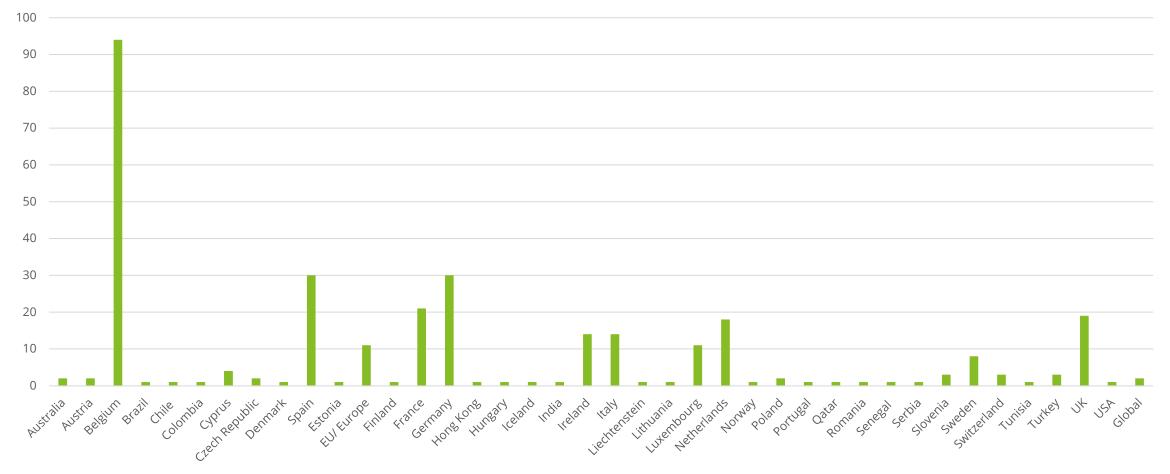
Workshop objectives

What is the purpose of this workshop?

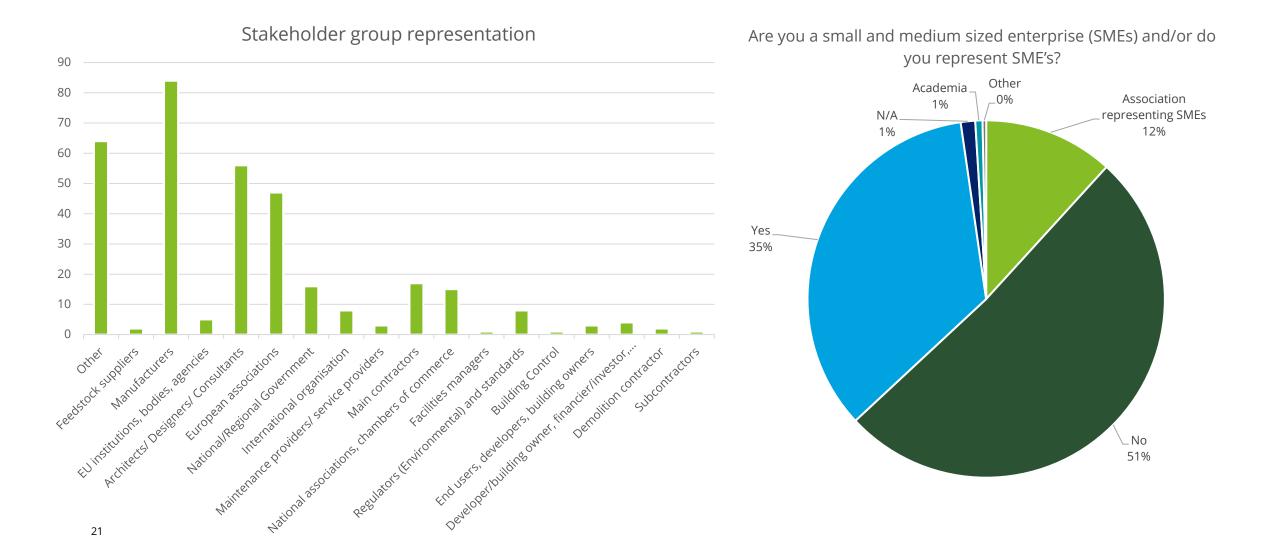

Present the study, the objectives and methodological approach.

Present the preliminary findings obtained during the first phase of the study.

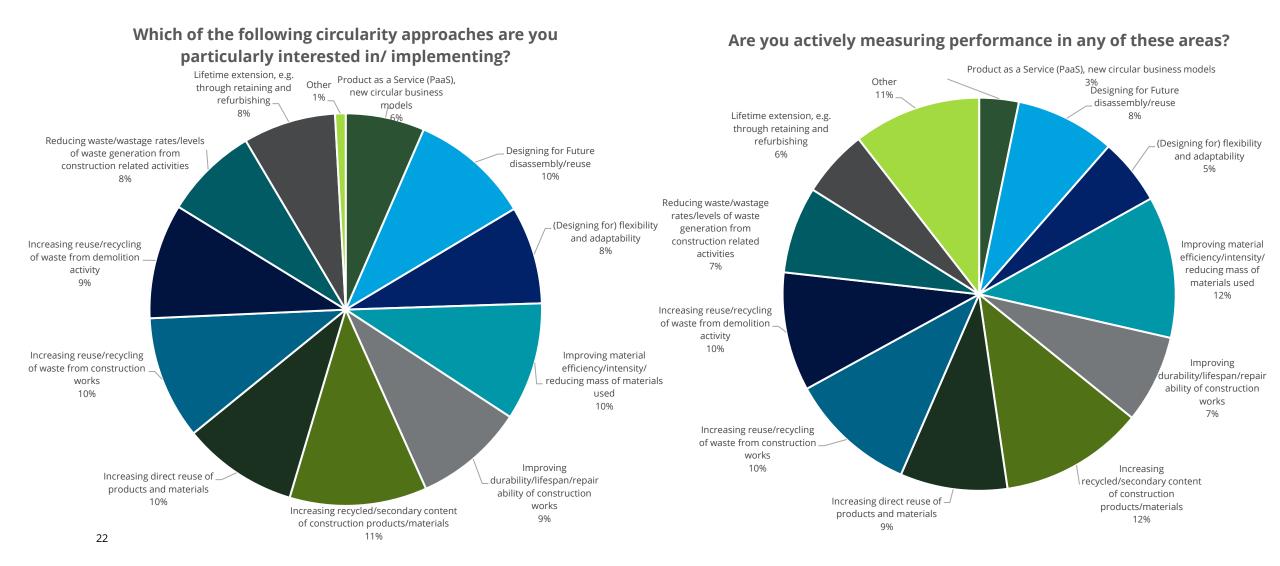
Validate our preliminary results with the construction industry ecosystem.


Gain insights into the status quo of the circular economy in the ecosystem.

Join us for an interactive session on wooclap!



Results from survey registration form


Country of origin

Results from survey that people filled out to register

Results from survey that people filled out to register

SCOPE AND GOAL OF THE WORKSHOP

Tour de table – Presenters

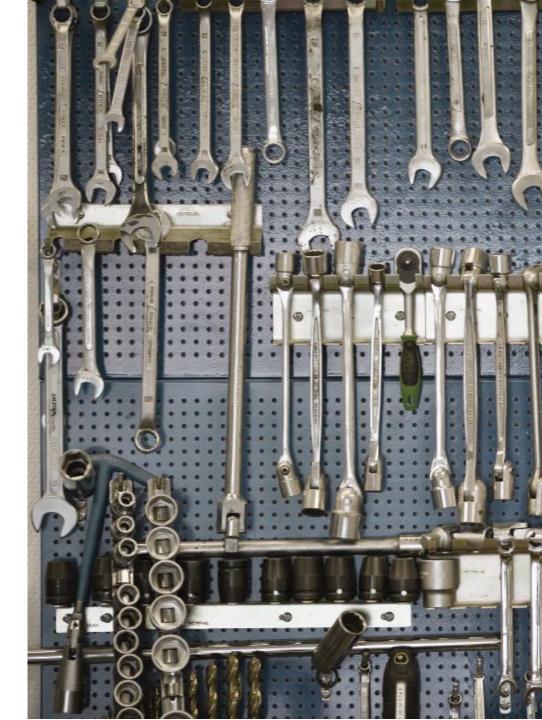
Deloitte and Reusefully

Gilli Hobbs

- Sustainability and Circular Economy Advisor
- Reusefully

Katherine Adams

- Consultant and Director
 of Reusefully
- Reusefully


Andreas Mitsios

- Manager, Expert in Sustainable Construction
- Deloitte France

INTERIM RESULTS

We agreed on the following 11 circular approaches

- 1 Product as service, new business models
- ² Designing for future disassembly and reuse
- ³ Designing for flexibility and adaptability
- 4 Improving material efficiency/intensity/mass of materials used
- ⁵ Improving durability, lifespan, repairability of construction works
- ⁶ Increasing recycled and secondary content of construction products and materials
- 7 Increasing direct reuse of products and materials
- ⁸ Increasing reuse/recycling of waste from construction works
- ⁹ Increasing reuse/recycling of waste from demolition works
- ¹⁰ Reducing waste/wastage rates/waste generation from construction activities
- 11 Life time extension e.g. through retaining and refurbishing

INTERIM RESULTS

To shortlist circularity indicators, we used six criteria

Data

Score primarily based on availability but also considering accuracy and timeliness of available data

Availability of standard measurement methodology

Score based on the availability of methodologies to measure them

Current measurement

Score primarily based on whether this is part of existing standards, if they are being measured now

Ease of measurement

Score based on the ease of them being measured now and in the future, an analysis of the indicator – e.g. judgement

Relevance

Score based on assessment of the link between the indicator and broader circularity goals

Drivers and barriers

Score based on link to drivers and barriers for data collection

The shortlist includes 10 indicators at product/material level and 16 indicators at building/infrastructure level

PRODUCT/MATERIAL LEVEL

- Reused product
- Remanufactured/reused content
- Recycled/secondary content
- Design for disassembly and circularity
- Wastage rate
- Predicted service life
- Hazardous waste
- Realistic end of life scenarios developed
- Residual value per unit product/material at end-of-life
- Part of an Extended Producer Responsibility system (i.e. take-back system)

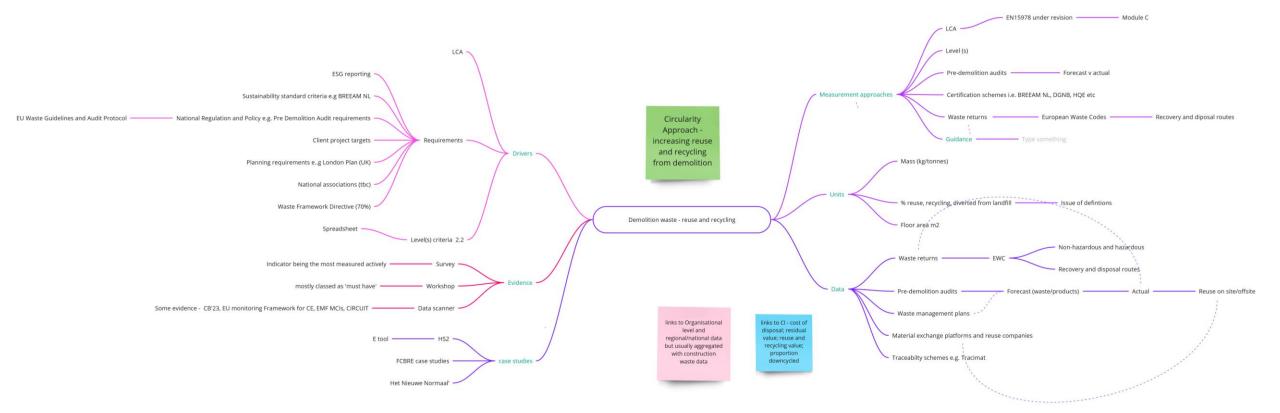
BUILDING/ INFRASTRUCTURE LEVEL

- At concept stage: comparison of asset life cycle costs
- At concept stage: comparison of asset life cycle assessment
- At design stage: Material intensity/ dematerialisation
- At design stage: reused content
- At design stage: recycled content
- Designed for adaptability and flexibility
- Designed for disassembly/ deconstruction
- Construction waste generated on and off site
- Hazardous waste generated during construction
- Construction waste reused, recycled, recovered, landfilled

- Construction related waste generated through in-use/ refurbishment cycles
- Effective utilisation of building (e.g. levels of occupancy) or asset; Intensiveness of use
- At end of use of building/asset: proportion of building/asset retained (mass) for further use
- Demolition waste generated
- Hazardous waste generated at demolition
- Demolition waste reused, recycled, recovered, landfilled

The shortlist includes 5 indicators at urban level and 9 indicators at organisation level

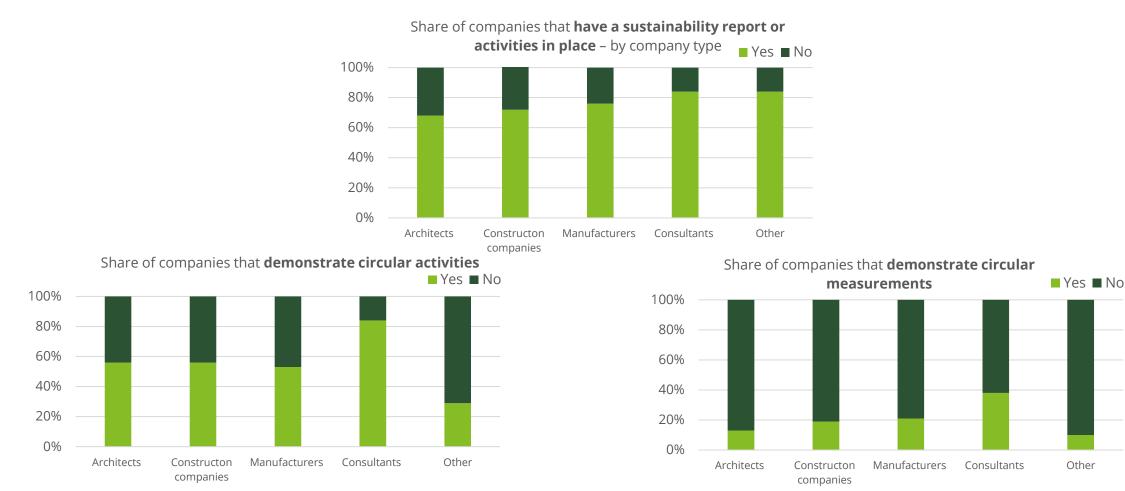
URBAN LEVEL


- Demolition waste generated
- Recycling/recovery rate of construction and demolition waste
- Refurbishment and transformation rate relative to new construction
- Demolition rate
- Average age at demolition

ORGANISATIONAL LEVEL

- Refurbishment/transformation rate of buildings/infrastructure portfolio
- Predicted service life of buildings/infrastructure portfolio
- Average reused and recycled content in new buildings/infrastructure (circular inputs)
- Reused and secondary content input
- Non hazardous waste arisings
- · Hazardous waste
- Waste management routes
- Requirements set for specification of circular economy approaches including recycled + reused products and materials
- Requirements set for pre-demolition audits and subsequent implementation

INTERIM RESULTS


Circularity indicators example Building level: Demolition waste

Data (6/6)	Availability of standard measurement methodology (3/3)	Current measurement (3/3)	Ease of measurement (2/3)	Relevance (3/3)	Drivers and barriers (5/6)	Overall Score – 22/24
------------	--	------------------------------	---------------------------	-----------------	-------------------------------	--------------------------

Circularity indicators – Results of company analysis

So far, we have scanned 199 companies to track their sustainability and circularity activities that they have currently in place

Drivers and Barriers

We are defining the drivers and barriers for the uptake of circular economy approaches and the collection of relevant data in relation to the indicators. The analysis so far has identified a number of drivers and barriers that will be refined and linked to specific indicators.

Shortlisted indicators	Barriers	Drivers				
BUILDING OR INFRASTRUCTURE LEVEL						
At Concept stage comparison of infrastructure life cycle costs	High cost associated with the collection, reporting or delivering the data	More consistent data formats along the supply chain				
At Design stage - Material intensity/ dematerialisation	Difficulty to track origin of products and their constituent materials	Requirements set by project investors and clients				
Designed for adaptability and flexibility	Technical uncertainty associated with circular economy practices and what needs to be achieved	Establishment of a functioning business model around circular economy				
ORGANISATIONAL LEVEL						
Refurbishment/Transformation rate of buildings/ infrastructure portfolio	Limited data availability	Investments on financial and human resources				
Predicted service life of buildings/ infrastructure portfolio	Data confidentiality / potential impact on business	Business procurement practices				
Average reused and recycled content in new buildings/infrastructures (circular inputs)	Data interoperability / lack of standardisation	Internal targets within organisation				
URBAN LEVEL						
Total Construction & Demolition waste generated (city/region/national level)	Inaccuracy and reliability of data	Standardised indicators provided by European standards to encourage companies to provide data to the market				

We will now hear two presentations on the application of circular approaches at product/ material level

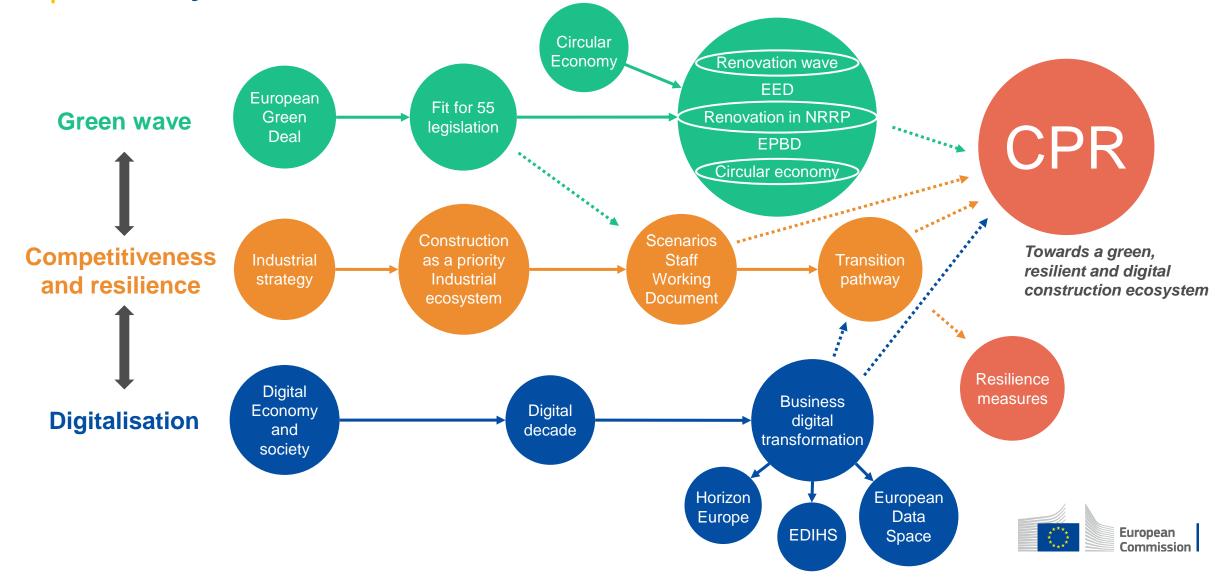
DG GROW: Presentation on CPR, ESPR and « the others » … By Manfred Fuchs (Policy Senior Assistant, DG GROW)

Manfred Fuchs

33

CPR, ESPR and « the others » ...

DG GROW unit H.1



The new CPR proposal

- Focus on (technical) information needed by users (for the whole life cycle)
- Embedded in sustainability policies and instruments
- Not "inventing the wheel again" use existing formats and structures
- ESPR as basis addition: EN 15804

Transition pathway of the construction ecosystem and the CPR

EU Regulatory framework

ESPR

Ecodesign for Sustainable Products Regulation

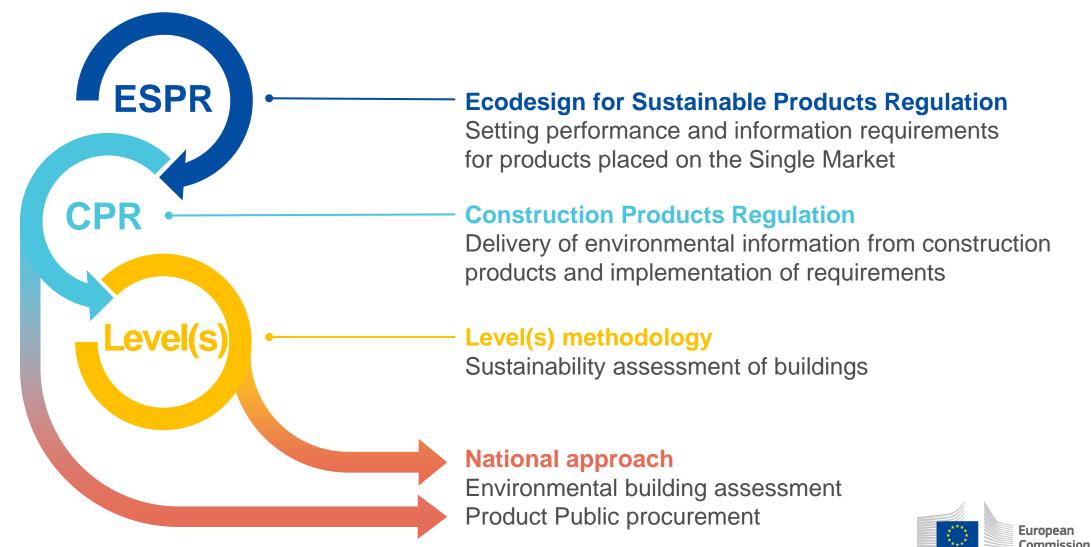
Setting performance and information requirements for products placed on the Single Market

Construction Products Regulation

Delivery of environmental information from construction products and implementation of requirements

Level(s) methodology

Sustainability assessment of buildings


Taxonomy

Sustainable activities **EPBD** Sustainable buildings **EED**

Public procurement of buildings

National Regulatory framework

Essential characteristics

Core indicators

- Climate change total / fossil / biogenic / land use and land use change
- Ozone Depletion
- Acidification
- Eutrophication aquatic freshwater
- Eutrophication aquatic marine
- Eutrophication terrestrial
- Photochemical ozone creation
- Depletion of abiotic resources mineral and metals
- Depletion of abiotic resources fossil fuels
- Water use

Additional indicators

- Particulate matte remissions
- Ionizing radiation, human health
- Ecotoxicity (freshwater)
- Human toxicity, cancer effects
- Human toxicity, non- cancer effects
- Land use related impacts / soil quality

Same indicators and modelling used in PEF except for end of life calculation and GWP biogenic

Essential characteristics

Resource use indicators

- Use of renewable primary energy
- Total use of renewable primary energy resources
- Use of non-renewable primary energy
- Total use of non-renewable primary energy
- Use of secondary material
- Use of renewable secondary fuels
- Use of non-renewable secondary fuels
- Net use of fresh water

Waste related indicators

- Hazardous waste disposed
- Non-hazardous waste disposed
- Radioactive waste disposed

Output flows

- Components for re-use
- Materials for recycling
- Materials for energy recovery
- Exported energy

Biogenic carbon content

- Biogenic carbon content in product
- Biogenic carbon content in accompanying packaging

"Old" & "new" CPR

- Updating mandates/requests for technical specifications to CEN for construction products (« Technical Acquis »)
- Two versions:
 - one for the current CPR
 - one for the requirements of the future CPR

Steering group

Fire

Dangerous substances

Environmental sustainability

2021	1	Precast concrete products
2021	2	Structural metallic products
2022	3	Reinforcing prestressing steel
2022	4	Doors, windows and shutters
2023	5	Cement
2023	6	Thermal insulating products
	7	Structural timber products
	8	Concrete, mortar and grout
	9	Masonry
	10	Aggregates
	11	Fixed firefighting equipment
	12	Road construction products

		13	Floorings	25	Gypsum
	Г	14	ETICs	26	Anchors and fas
el		15	Curtain walling	27	Membranes
ſS		16	Wood based panels	28	Glass
		17	Structural bearings	29	Geotextiles
5	4	18	Kits and assemblies	30	Sanitary appliar
		19	Wall and ceiling finishes	31	Pipes and tanks
		20	Space heating appliances	32	Cables
		21	Roof coverings	33	Chimneys
		22	Circulation fixtures	34	Sealants
:		23	Waste water disposal		
		24	Adhesives		

25	Gypsum
26	Anchors and fasteners
27	Membranes
28	Glass
29	Geotextiles
30	Sanitary appliances
31	Pipes and tanks
32	Cables
33	Chimneys
34	Sealants

"Old" & "new" CPR

- How to ensure data quality comparability of data?
- How to deal with EPDs based on national/regional baselines?

We will now hear two presentations on the application of circular approaches at product/ material level

Massimiliano Bagagli

ITACA protocol: a possible path to sustainability in the governance of the building process By Massimiliano Bagagli (ITACA Working Group Coordinator, ITACA)

ITACA PROTOCOL: A POSSIBLE PATH TO SUSTAINABILITY IN THE GOVERNANCE OF THE BUILDING PROCESS

Massimiliano Bagagli ITACA Working Group Coordinator

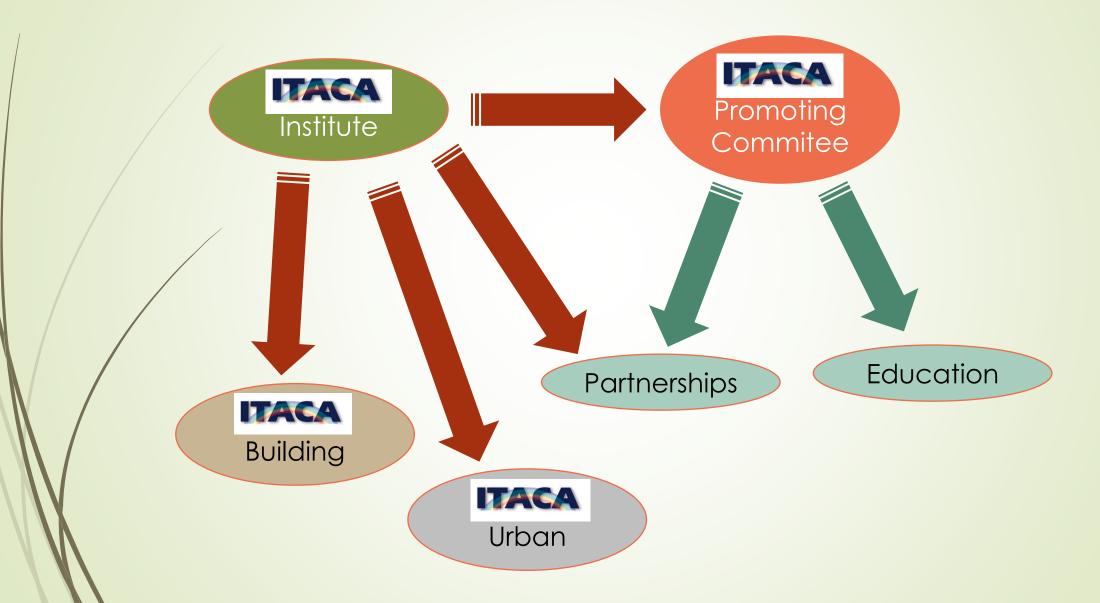
European

Commission

About ITACA

ITACA – the Italian Institute for Innovation and Transparency in Public Procurement and Environmental Compatibility, is a technical supporting body to the Conference of the Italian Regions

5 THEMATIC AREAS OF ACTIVITY:


Public contracts for construction works, services and supplies;

- Energy and environmental sustainability;
- Safety at Work;
- Technical specifications;
- Regional Contracts Observatory.

14 Italian regions out of 20 using ITACA Protocol as tool for assessing green buildings

Thousands of buildings have been evaluated with ITACA Protocol

About ITACA

ITACA Protocol, also called UNI PdR 13:2019, is a multicriteria building environmental sustainability assessment tool and it has been developed from the international evaluation model SBTool.

ITACA Protocol has become an UNI Reference Practice "Environmental sustainability in construction - Operational tools for assessing sustainability". UNI is the Italian national standardisation body.

Structure: 3 chapters, 5 evaluation, areas, 19 categories

PdR 13:2019 – 0	
Methodology	

PdR 13:2019 – 1 Residential Buildings PdR 13:2019 – 2 Not Residential Buildings

Area A – Site quality

Cat. A.1 Site selection Cat. A.2 Project infrastructure and services

Area B – Energy and resource consumption

Cat. B.1 Non renewable primary energy
Cat. B.3 Energy from renewables
Cat. B.4 Eco-friendly materials
Cat. B.5 Use of drinking water
Cat. B.6 Envelope performance

Area C – Environmental loadings

Cat. C.1 CO2 emissions Cat. C.3 Solid waste Cat. C.4 Wastewater Cat. C.6 Impact on project site

Area D – Indoor environmental quality

Cat. D.2 Indoor air quality and Ventilation
Cat. D.3 Air temperature and relative humidity
Cat. D.4 Daylighting and illumination
Cat. D.5 Noise and acoustics
Cat. D.6 Electromagnetic emissions

Area E – Service quality

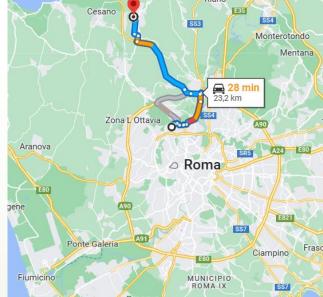
Cat. E.2 Functionality and efficiency
Cat. E.3 Controllability
Cat. E.6 Maintenance of operating performance
Cat. E.7 Social aspects

B.4 ECO-FRIENDLY MATERIALS

B.4.6 Use of recycled materials

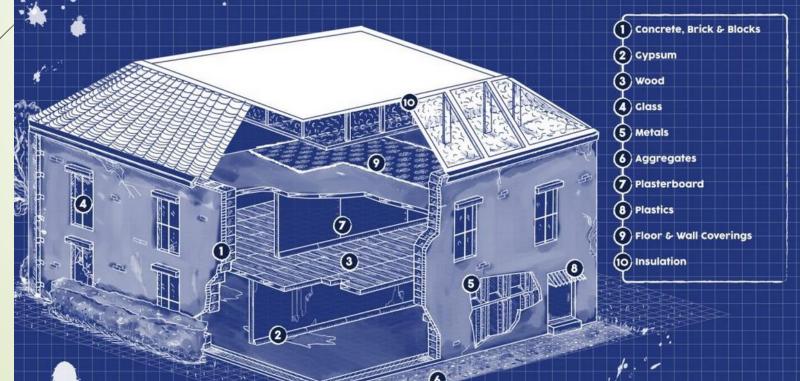
- B.4.7 Use of renewable materialsB.4.8 Local materialsB.4.10 Use of dismounting materialsB.4.11 Certified materials
- Foundation structure
- Elevation structure
- Vertical closure
- Lower horizontal closure
- Horizontal closure on external spaces
- Upper closure
- Vertical interior partition
- Horizontal interior partition
- Interior sloping partition
- · Vertical exterior partition
- Horizontal exterior partition
- Inclined exterior partition
- Basement partitions

AREA DI VALUTAZIONE	CATEGORIA							
B. Consumo di risorse	B.4 Materiali eco-o	ompatibili						
b. Consumo di risorse								
ESIGENZA	PESO	DEL						
Favorire l'impiego di materiali riciclati e di recupero per	nella categoria	nel sistema completo						
diminuire il consumo di nuove risorse a favore								
dell'economia circolare.		SV.						
INDICATORE DI PRESTAZIONE	UNITÁ DI MISUR							
	•/							
Percentuale in peso dei materiali riciclati e/o di recupero e utilizzati nell'intervento in aggiunta alla	o dei materiali riciclati e/o di							
percentuale limite di legge.								
SCALA DI PRESTAZIONE								
	%	PUNTI						
NEGATIVO	<0,0	-1						
SUFFICIENTE	0,0	0						
	2.0	3						
BUONO	3,0							



B.4 ECO-FRIENDLY MATERIALS
B.4.6 Use of recycled materials
B.4.7 Use of renewable materials
B.4.8 Local materials
B.4.10 Use of dismounting materials
B.4.11 Certified materials

- Foundation structure
- Elevation structure
- Vertical closure
- Lower horizontal closure
- Horizontal closure on external spaces
- Upper closure
- Vertical interior partition
- Horizontal interior partition
- Interior sloping partition
- · Vertical exterior partition
- Horizontal exterior partition
- Inclined exterior partition
- Basement partitions



B.4 ECO-FRIENDLY MATERIALS B.4.6 Use of recycled materials

B.4.7 Use of renewable materialsB.4.8 Local materialsB.4.10 Use of dismounting materialsB.4.11 Certified materials

B.4 ECO-FRIENDLY MATERIALS

B.4.6 Use of recycled materials
B.4.7 Use of renewable materials
B.4.8 Local materials
B.4.10 Use of dismounting materials
B.4.11 Certified materials

LCA: Results

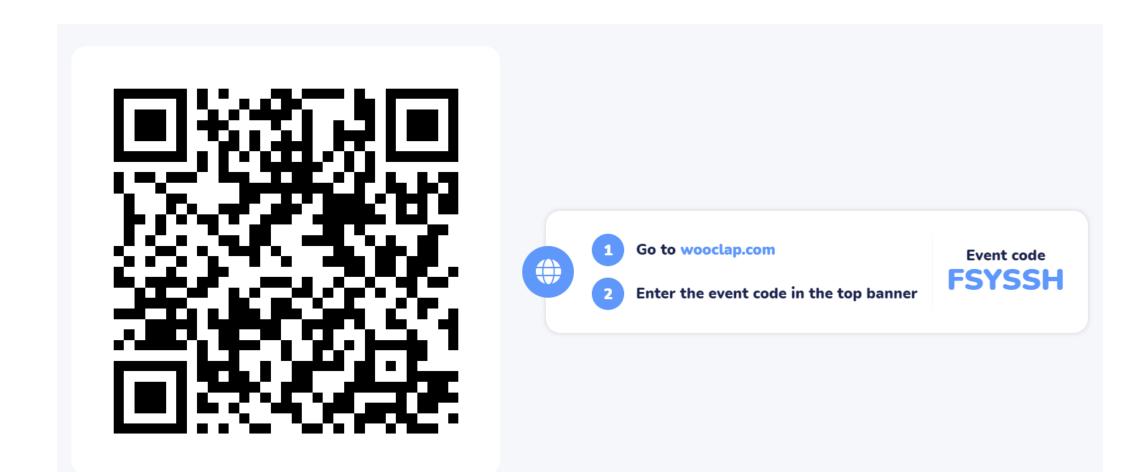
PRODUCT STAGE			JCT STAGE CONSTRUCTI ON PROCESS STAGE			USE STAGE							DOFL	BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES		
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B 3	B4	B 5	B6	B7	C1	C2	C3	C4	D
х	х	x	x	х	х	MND	MND	MND	MND	MND	MND	MND	x	х	x	x
RESL	JLTS	OF TH	IE LCA	- EN	/IRON	MENT	AL IM	PACT	: 1 m²	URBA	NSCA	PE Ex	tensiv	e Gre	en Ro	of System
Param eter	Unit		A1-	A3	A	•	A5		B1		C2		C3		C4	D
GWP	[kg Cd	D ₂ -Eq.]	3.97	E+0	6.68	E-1	2.02E4	+0	-1.50E+	1	5.33E-2	1	.96E+1	5	03E-1	-1.78E+0
ODP	Ikg CFC	211-Eq.]	3.748	-10	3.07E	-12	1.41E-	10	0.00E+	0	2.45E-13		01E-11	4.	32E-10	-3.20E-10
AP	-), Eq.]	2.44		1.65		6.64E	4	0.00E+	0	1.31E-4		94E-3	_	29E-5	-2.63E-3
EP		4P-Eq1	3.86		3.81		1.14E		0.00E+		3.04E-5		12E-4		62E-6	-3.17E-4
POCP		me-Eq.]	1.51		-4.62		5.30E		0.00E+		-3.69E-5		.88E-4		34E-6	-2.67E-4
ADPE		b-Eq.]	1.35		4,45		4.46E		0.00E+	_	3.55E-9	_	97E-7		36E-9	-4.32E-7
ADPF	F [MJ]		7.806	=+1	9.206	=+0	1.78E+	+0	0.00E+	0	7.34E-1	5	73E+0	7.	65E-2	-2.23E+1

If you can't measure it, you can't improve it

LORD WILLIAM THOMSON KELVIN

Massimiliano Bagagli

m.bagagli@itaca.org



Indicators at product/material level

PRODUCT/MATERIAL LEVEL

- Reused product
- Remanufactured/reused content
- Recycled/secondary content
- Design for disassembly and circularity
- Wastage rate
- Predicted service life
- Hazardous waste
- Realistic end of life scenarios developed
- Residual value per unit product/material at end-of-life
- Part of an Extended Producer Responsibility system (i.e. take-back system)

Join us for an interactive session on wooclap!

We will now hear four presentations on the application of circular approaches at buildings/infrastructure level

Evert Schut

Circular indicators for infrastructure: The Dutch approach

By Evert Schut (Senior expert circular economy, Dutch Ministry of Infrastructure and Water management)

Rijkswaterstaat Ministry of Infrastructure and Water Management

Circular indicators for infrastructure The Dutch approach

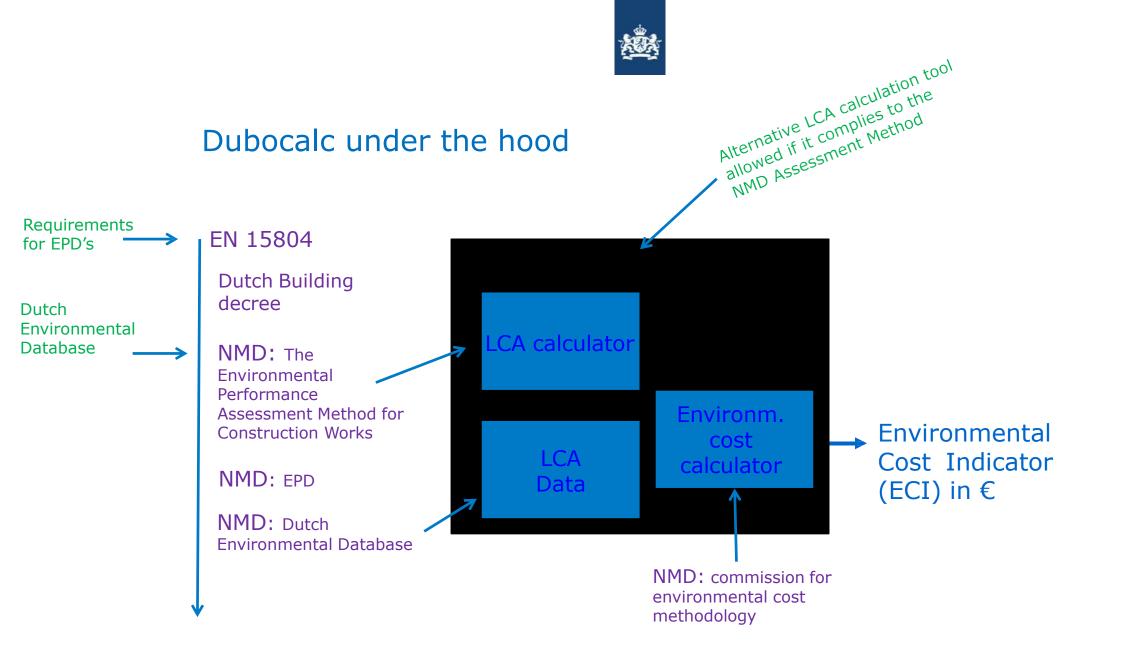
Evert Schut March 23, 2023

A sustainable procurement strategy for hoad infrastructure

23 March 2023

Gemeente

Rotterdan


Sustainable procurement of infrastructure in the Netherlands

- In 2008 Rijkswaterstaat started awarding sustainability using MEAT criteria (Most Economically Advantageous Tender) and DuboCalc: LCA based design instrument
- Methodology:
 - A bidding construction company is required to assess the environmental impact of their design using Dubocalc (or other allowed LCA software)
 - The result is an aggregated indicator for the environmental costs *in Euro's*.
 - These costs are added to the price of the bid, and the project is awarded to the bid with the lowest price (including the environmental costs).
- Performance orientated:
 - Construction companies are free to make a design that complies to the technical specifications with the lowest environmental performance
 - Environmental impact performance plays a major role in selecting the winning bid
- By the way: this not a "True Pricing" method, the environmental costs are only used to determine the lowest integral price point. The sustainable design aspects included in the bid are however mandatory and will be controlled at the construction phase.
- Many other infrastructure client organisations have taken over the approach, but it is not mandatory.

Dubocalc: Sustainable Construction Calculator ("SuCocalc?")

Results Rijkswaterstaat sustainable procurement with MKI (ECI) indicator

Projecten met DuboCalc als BPKV-criterium

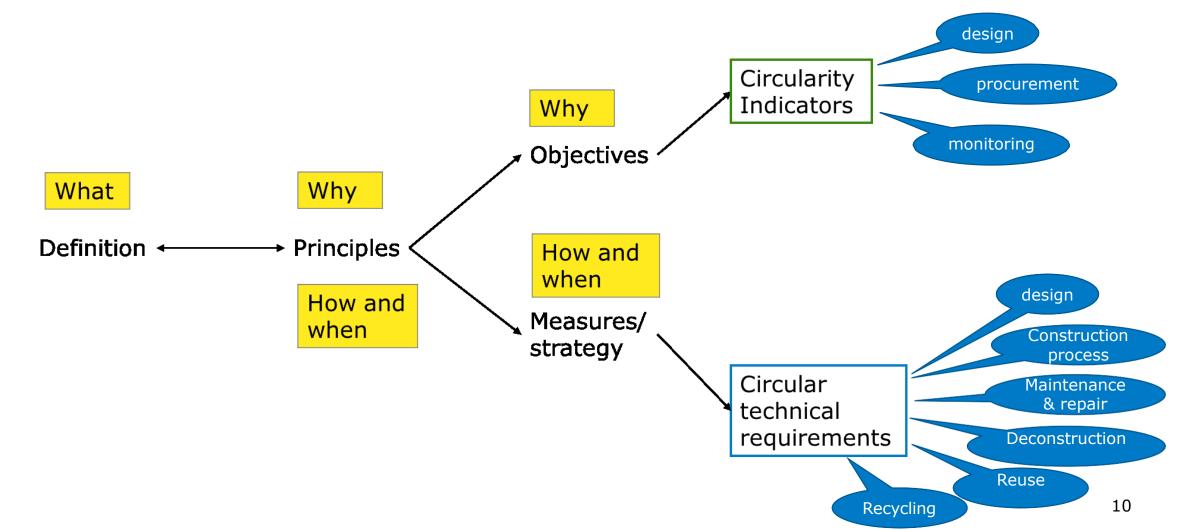
Limitations to sustainable procurement

- For instance:
 - Design flaws, limiting life span of materials/ products/ constructions:
 - eg. lacking accesibility hampers maintenance and repair (won't show up in any LCA)
 - Functionality is much shorter than expected, because of lacking adaptability in the design
 - E.g. large scale reconstruction of a traffic node after only 15 years
 - Lacking execution at construction stage
 - because we don't allow our construction companies enough time
 - Recyclability is limited to downcycling because of lacking detachability
- These are all aspects of *circular* -design, -construction and assetmanagement.
- A more circular, more *technical* approach is required!

The proof of the pudding is in the eating

Rijkswaterstaat and Circular construction

- Aspects of circularity were always part of the sustainability mix, but not a priority, and not an integral part of the work process
- In 2016 Rijkswaterstaat adopted the ambition to "work in a fully circular manner by 2030"
- Whatever that may mean....
- Reason to form a team to find out what circular construction would mean and start implementing it
- We realised we could not do this alone, we needed our partners in the construcion value chain
- Initiative to start Platform CB'23 (circular construction 2023), together with our national Standardisation Institute NEN
 - Over 300 participants from the construction sector (both buildings and infrastructure)
 - find agreement on whatever is needed to start working in a more circular manner in the whole sector



CB'23 Guideline "Measuring circularity"

- Approach:
 - Why do we need circular construction and what are the objectives we want to achieve?
 - Protect the environment (including climate change)
 - Protect resource availability
 - Protect value
 - For each objective find measurable indicators:
 - Environment: LCA methodology
 - Covered by the EN 15804 and the National Building Decree/ NMD Assessment method
 - Resource availability: MFA based on LCI
 - assess the results with an indicator for scarcity
 - Value..... Which value?
 - Functional, technical/ material and economic value

Working from principles to assessment

Assessment of technical-circular requirements

- Answering questions like:
 - "Which test method is needed to provide evidence that a product achieves a required technical circular performance?"
- For instance: a test method that gives adequate information on the long term detachability of a construction product
- Other examples of technical circular requirements:
 - adaptability,
 - reparability,
 - maintainability,
 - lifespan,
 - reusability
 - recyclability.
- It requires a horizontal standard at a principle level, and specific technical standards at product group level.

- CB'23 and NEN are working on a first set of technical requirements
- CEN TC 350/ sub-commission "Circular Construction" will probably follow

Thank you for listening

We will now hear four presentations on the application of circular approaches at buildings/infrastructure level

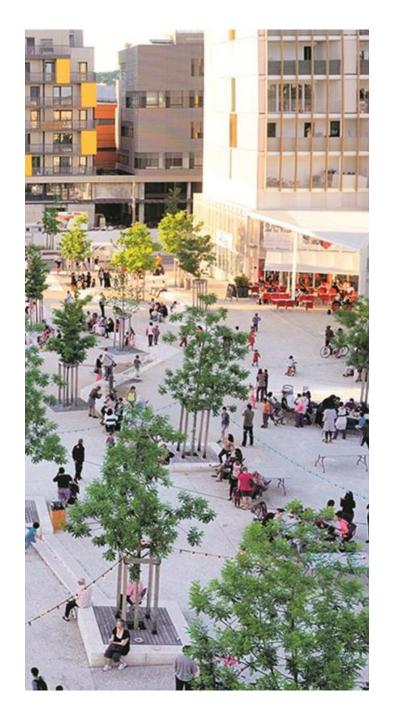
Edouard Sorin

Presentation of BTPFlux and the PEMD Platform


By Edouard Sorin (Research & expertise engineer in circular economy, CSTB)

Presentation of BTPFlux and the PEMD Platform

March 28th, 2023

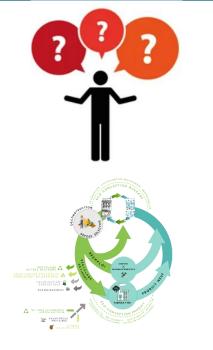


- Environmental regulation for new buildings construction – RE2020

- Generalize Life Cycle Analysis for new buildings
- Promote reuse / recycling if lower embodied CO2 emissions
- Mandatory diagnostic/audit for demolition or important renovation operations
 diagnostic PEMD
 - Analyse the valorisation potential for building materials
 - Show availability of deposits by localizing and quantifying them

- Extended Producer Responsability

- Building material valorisation costs supported by building material sellers
- Objectives set by public bodies



BTPFlux

BTPFLUX A flow analysis model for buildings components

/ Objectives

Important issues to be managed by local decision makers

- \Rightarrow Management and treatment of the Products, Equipements, Materials and Waste (PEMW)
- \Rightarrow Development of localwaste management and valorisation sectors
- \Rightarrow Ensure the supply of resources (local when possible)
- \Rightarrow Reduction of the ecological footprint of their territory

Anticipate and optimize the flow of PEMW associated with the building sector (Urban Mining)

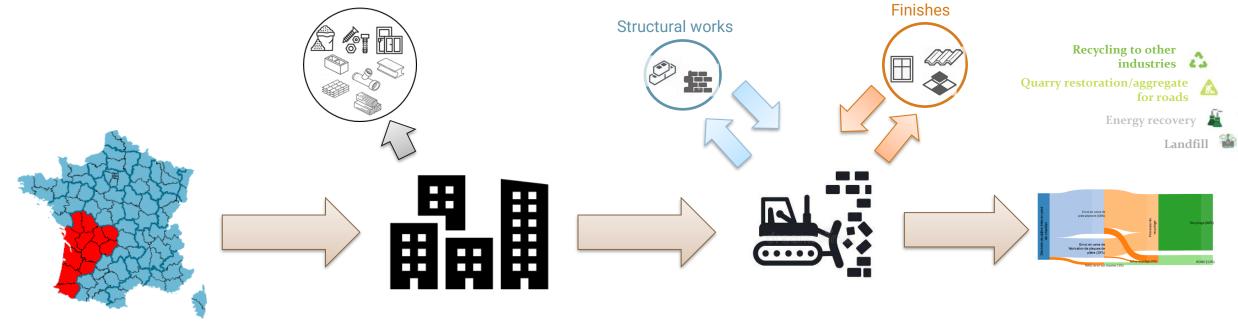
- \Rightarrow Construction -> consumption
- \Rightarrow Deconstruction -> production
- ⇒ Renovation and Rehabilitation -> consumption and production

Conduct studies at different scales

- \Rightarrow France
- \Rightarrow Region/Province
- \Rightarrow Territorial communities
- \Rightarrow Municipalities/Neighborhood

Incorporating territorial specificities

- \Rightarrow Architectural considerations
- \Rightarrow Building stock dynamics -> construction, deconstruction, ...
- ⇒ Capacity for management and processing-> by category of PEMW
- \Rightarrow Local production capacity -> resources, firms, ...



- ⇒ Quantification and identification of flows -> by category of PEMW
- \Rightarrow Resource sustainability
- \Rightarrow Valorisation potential -> building components
- ⇒ Socio-economic impacts -> Number of direct or indirect local jobs
- \Rightarrow Prospective scenarios -> carbon trajectory, population growth, ...

Selection of a territory in metropolitan France

Estimation of the existing components stock

Estimation of additions and removals of components

Analysis of related flow management

Identification of strategic sectors

CSTB / Territory selection

Metropolitan France Region Department Metropolis Collectivity

Incorporate territorial specificities

- \Rightarrow Architectural considerations
- \Rightarrow Building stock dynamics -> construction, deconstruction, ...

Use of the Base de Données Nationale de Bâtiments (BDNB) (French National Building Database) Geospatial cross-referencing of over 20 national databases

⇒ Partially in open data : Base de données nationale des bâtiments (BDNB) - data.gouv.fr

/ Estimation of a territory component stock in buildings Database of building components

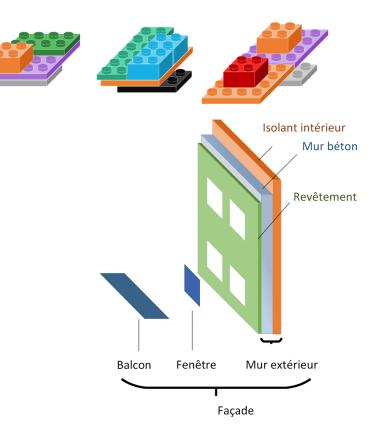
le futur en construction

Database of generic components (TyPy)

 \Rightarrow Over 300 components with different information :

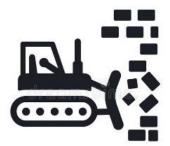
- Density or surface density
- > Thermal properties
- Material and waste composition
- LCA data
- ▶

Estimation of a territory component stock in buildings Materiality estimation


« Reconstruction » of a building using generic components

- \Rightarrow Creation of a macro-component from an assembly of components
- \Rightarrow Creation fo a macro-component from an assembly of macro-components
- \Rightarrow A building is a macro-component

Sizing of each component

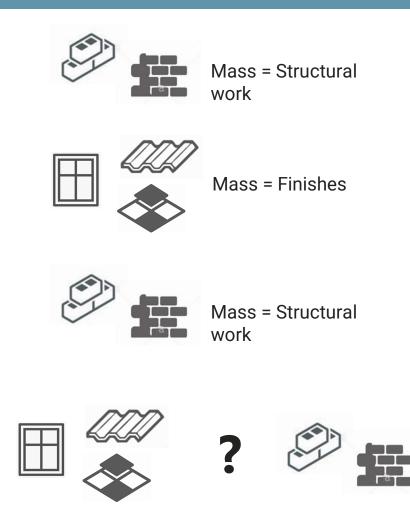

- \Rightarrow Inheritance of sizing
- \Rightarrow Rules on component or macro-component
 - Facade surface -> size of each component (window, wall, etc ...)
 - Specific attribute -> dimensions of a door

Estimate the addition and removal of components Building stock dynamic

Deconstruction

 \Rightarrow 100% of the component are removed

Thermal renovation

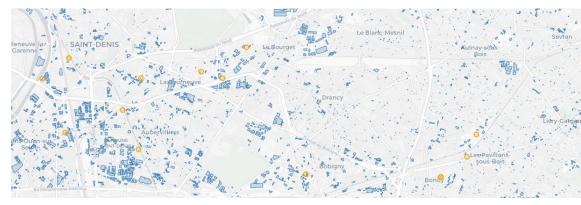

- \Rightarrow Installation and removal scenario
 - Added and removed component
 - Renovation gesture performed

Construction (incoming)

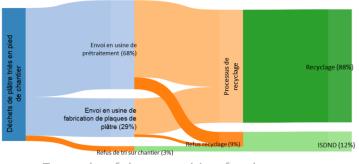
- \Rightarrow Need in components
- \Rightarrow Construction waste

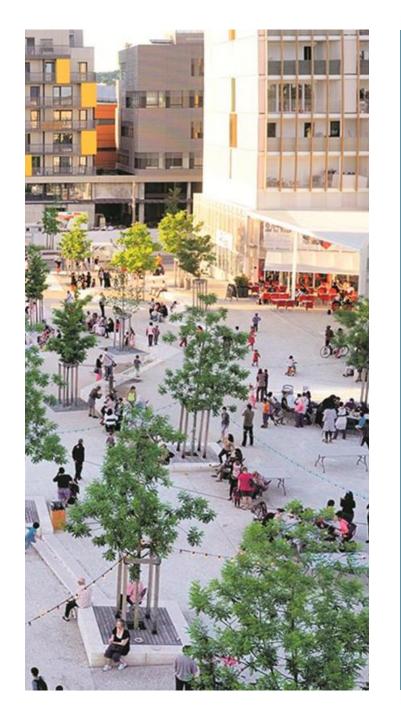
Rehabilitation (incoming)

- \Rightarrow Installation and removal scenario
 - Added and removed component
 - Renovation gesture performed



Flow origins


- \Rightarrow Deconstruction/renovation/construction
- \Rightarrow Neighbourhood development project
- \Rightarrow Territory


Cartographic tool developped by the CSTB

Repartition in the waste end destinations

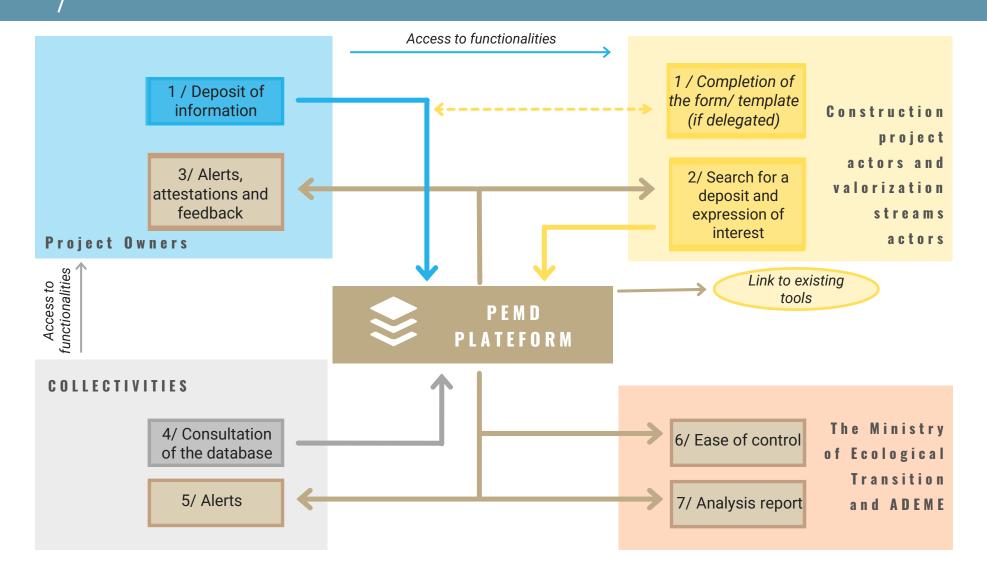
- \Rightarrow By category of PEMW
- \Rightarrow According to diferent scenarios
- \Rightarrow Repartition rates in the waste end destinations
- \Rightarrow Match of supply and demand for the management of PEMW in a territory

Example of the repartition for the gypsum

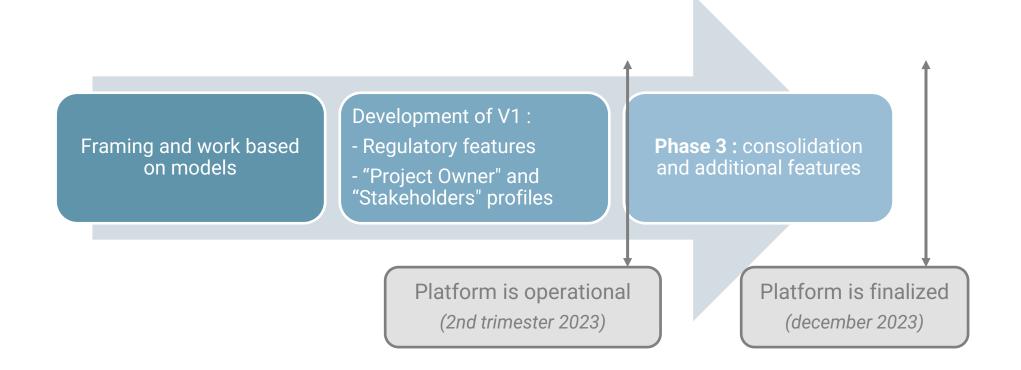
/PEMD platform presentation

- > Article 51 of the anti-waste for a circular economy (AGEC) law France
- > Initially planned for application on the 1st January 2022
- Should be applied during 2023
- > Who : Contracting authority
- Scope
 - > Operation type : Deconstruction and significant rehabilitation
 - > Building :
 - Area superior to 1000 m²
 - At least one building that has hosted:
 - Agricultural
 - Industrial
 - Commercial activity
 - Storage, manufacture or distribution of classified or dangerous substances

CSTB / Specificty of the PEMD audit


- Reinforcement of reuse: product, equipment and materials vision in addition to the waste vision
- Hierarchy of treatment and valorization methods: Identification of potential for reuse, recycling, material recovery, disposal and associated channels
- Competencies of the auditor: reinforcement of the skills required of the diagnostician with 3 axes : building techniques, construction economics, waste prevention and management
- Transmission: Obligation to transmit the diagnosis and the verification form to CSTB allowing for a control of compliance with regulations and statistical feedback
- Possibility of making the audit public: Allow reuse and recovery sectors to identify potential pools upstream of the operation
- > Harmonization of the template/form (CERFA in France): to be defined by a decree

- Functionalities :
 - Allow contracting authority to meet their regulatory obligations ;
 - Ensure the visibility and the accessibility of the PEMD audits before launching deconstruction and renovation works, in order to mobilize waste and material recovery channels as soon as possible
 - Organize feedback to the project owners to ensure a constant interest in providing information on the audits on the platform;
 - Create the conditions so that the public authorities can control the correct application of the regulations.
- Involve future users as much as possible

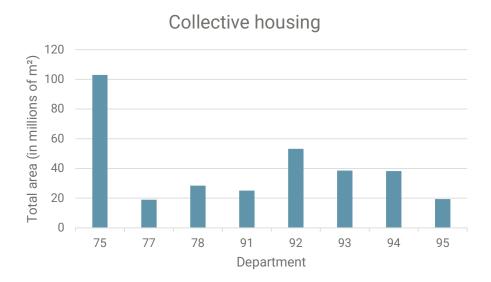


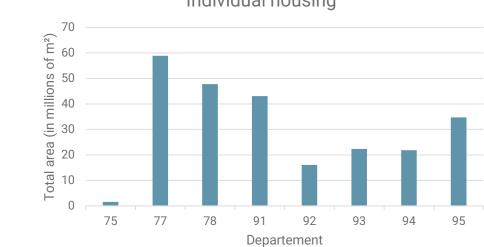
Presentation of the PEMD platform User profiles and functionalities

Presentation of the PEMD platform Development schedule

Thank you for your attention !

Appendices


 \Rightarrow ...

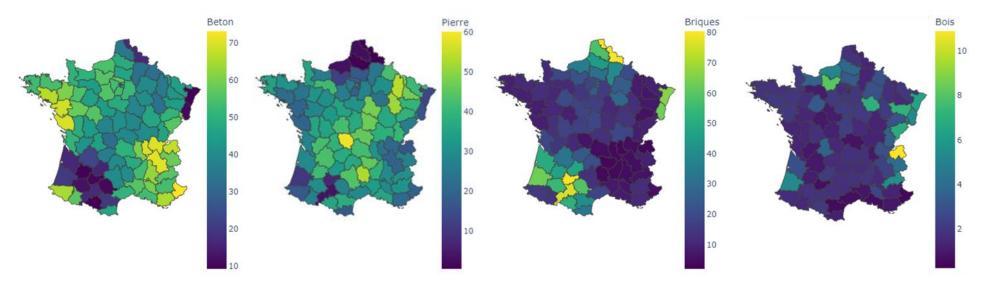


Basic information on the majority of buildings

- \Rightarrow Areas -> ground surface, premises, ...
- \Rightarrow Construction year
- \Rightarrow Main building use
- \Rightarrow Main structural material

Individual housing

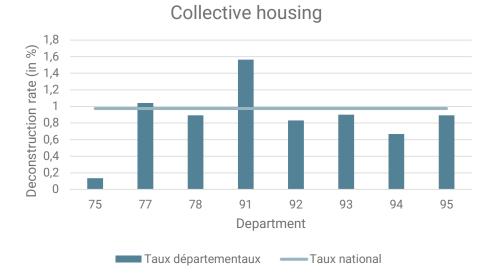
 \Rightarrow ...

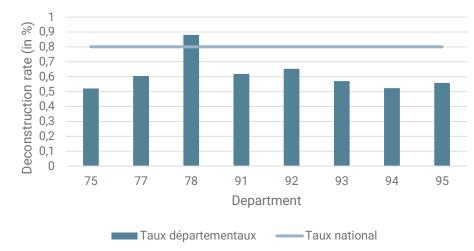


More detailed information on a number of residential buildings (DPE)

- \Rightarrow Wall material
- \Rightarrow Type of insulation
- \Rightarrow Type of floors
- \Rightarrow Ratio of glazed surface

Breakdown of wall materials by department according to DPE information (Residential)

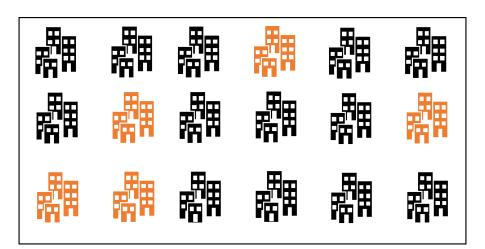

Territory selection Building stock description dynamic



Study of several vintages to deduce building stock dynamics

- \Rightarrow Current deconstruction rates by department
- \Rightarrow National renovation rates
- \Rightarrow Construction rates (incoming)

Individual housing


Estimation of a territory component stock in buildings Application to a given territory

Choice of a building sample

 \Rightarrow Buildings with a good information completion

- \succ Residential \rightarrow Buildings with a representative DPE
- > Non-residential -> Buildings with local area and construction period
 - Currently only 3 main building use -> Office, Education and Industrial
- \Rightarrow Estimation of the component stock for the building sample

Extrapolation of the results

- \Rightarrow Buildings category
 - \Rightarrow Main building use
 - \Rightarrow Construction period
 - \Rightarrow Main structural material
- \Rightarrow Statistical weight calculated on the local surface

Estimation of the component quantity in all the building stock of the territory

We will now hear four presentations on the application of circular approaches at buildings/infrastructure level

Ignasi Cubiñá

Example of Level(s) implementation: Circular renovation of a corporate office

By Ignasi Cubiñá (Founder of Eco Intelligent Growth/ Chief Strategy and Sustainability Officer at Construcía Group)

grupo // construcía

Example of Level(s) implementation

Circular renovation of a corporate office

Ignasi Cubiña, Chief Strategy and Sustainability Officer at Grupo Construcía Co-founder of ElG

Eco Intelligent Growth

A circular economy advisory and innovation company, based on the Cradle to Cradle® principles since 2005.

Capital

Positive impact investment company

We help companies find better solutions for safe, circular and sustainable construction for people and our planet,

by pioneering innovative products and services with a **measurable net positive impact.**

Project presentation

Pilot of office dismantling and renovation

Client: French insurance company

Location: France

Surface : 502 m2

Year : 2022


Architect and project management: Fern

C2C Circular Economy consultant: Eco Intelligent Growth

Local ecosystem: transformers, contractors, suppliers

heating, ventilation and air-conditioning

.

Pilot Project, beyond compliance

Initial need

Renovation of part of the headquarters

Client's Mission

- Controlling the ecological footprint
- Reducing waste and litter
- Adopting best practices to protect the planet

Regulatory context

- EU Green Deal
- EU Taxonomy criteria
- New Circular Economy Action Plan
- SFRD
- French regulations such as the Agec law (anti-waste for a circular economy)

Objetives & Action Plan

Pilot project to commit to the implementation of the circular transition of client's real estate assets and assess the environmental impact of the building throughout their entire life cycle beyond GHG emissions.

1. Know

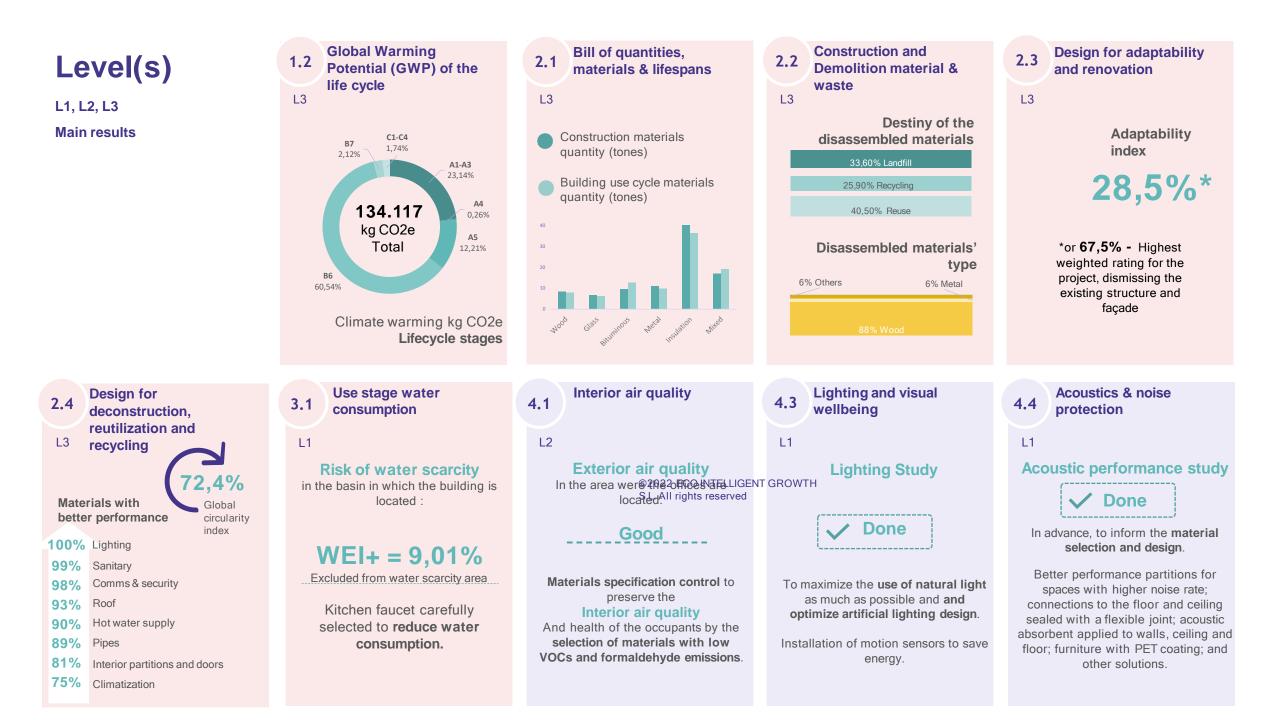
- Review existing materials to facilitate their circularity
 - Selective diagnosis before dismantling

2. Plan

- Improve construction systems for circularity
- Material Passport
- Selection of circular, safe and healthly materials (ideally C2C Certified®)
- Level(s) framework
- 3. Make and ^{©202} *Detimine the production process* Measure S.L. All rights free free and the second sec
 - Training of teams

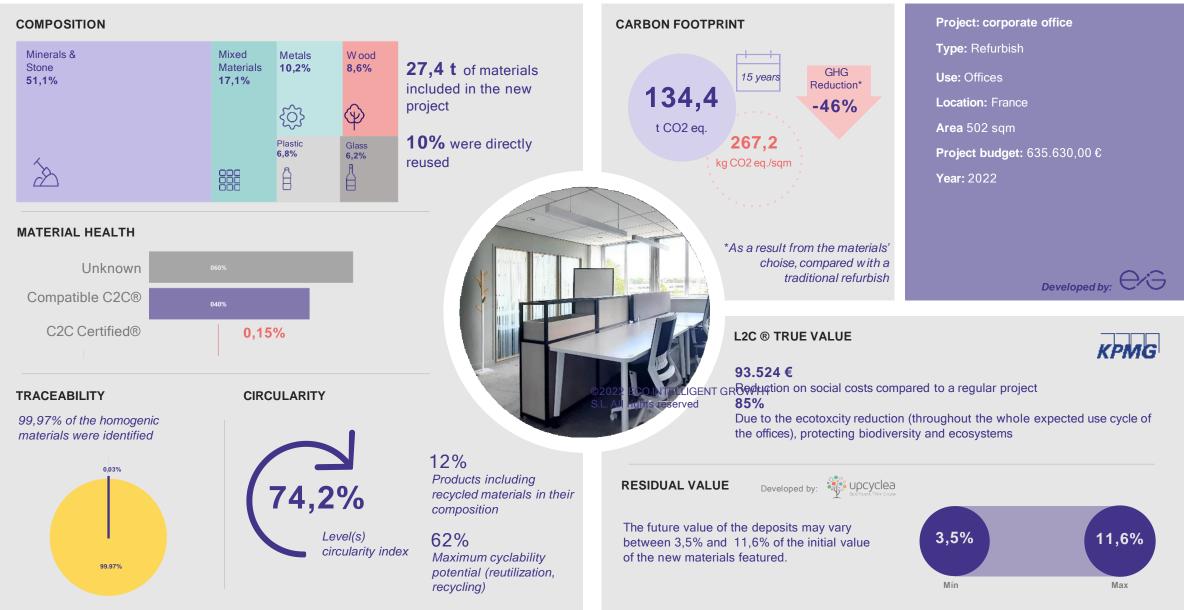
Measure the impacts

- Level(s) framework
- LCA of the building
- L2C True Value®
- Circular Signature



Level(s)

€⁄G


3 themes	6 macro-objectives	16 indicators	L1	L2	L3
	1. Greenhouse gas emissions	1.1. Energy performance in the use phase1.2. Life cycle global warming power (GWP)	•	$\stackrel{\bullet}{\rightarrow}$	•
Resource use and environmental performance	2. Life cycles of energy-efficient materials resources and circulars	 2.1 Bill of quantities, bill of materials and lifetimes 2.2 Construction and demolition materials and waste 2.3 Design for adaptability and renovation 2.4 Design for deconstruction, reuse and recycling 	••••	$\stackrel{\wedge}{\rightarrow}\stackrel{\wedge}{\rightarrow}\stackrel{\wedge}{\rightarrow}$	•••••
	3. Effective use water resources	3.1 Water consumption during the use phase	•	•	•
Health and comfort	4. Healthy and safe spaces comfortable	 4.1 Indoor air quality 4.2 Time outside the thermal comfort range 4.3 Lighting and visual comfort 4.4 Acoustics and ROLSE FOO INTELLIGENT GROWTH 4.4 Acoustics and ROLSE IPrights FOO INTELLIGENT GROWTH 		N/A N/A	N/A N/A
Cost, value and risk	5. Adaptation to climate change and resilience	 5.1 Protection of health and thermal comfort of the occupants 5.2 Increased risk of extreme weather events 5.3 Sustainable drainage 	•	N/A N/A	N/A N/A N/A
	6. Value and cost of optimised life cycle	 6.1 Life cycle costs 6.2 Value creation and risk exposure 	•	N/A	N/A

Circular Signature

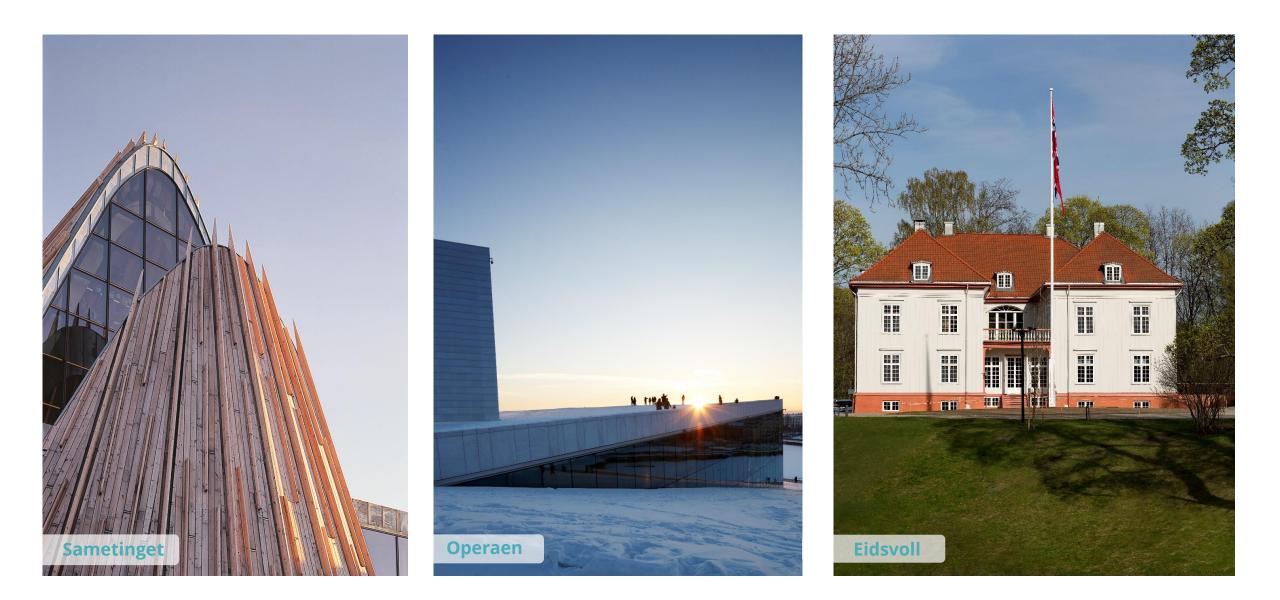
0/3

We will now hear four presentations on the application of circular approaches at buildings/infrastructure level

Lars Petter Bingh

Towards circularity in Statsbygg

By Lars Petter Bingh (Head of section climate and environment, Statsbygg)


STATSBYGG

Towards circularity in Statsbygg

Lars Petter Bingh, head of section, environment and climate

Buildings shape a nation

STATSBYGG

Strategy for public buildings

Ei berekraftig, kostnadseffektiv og samordna byggog eigedomsforvaltning svategi for bygg og eigedom i statleg sivil sektor.

Kommunal- og moderniseringsdepartementet

Fossil free construction sites by 2025

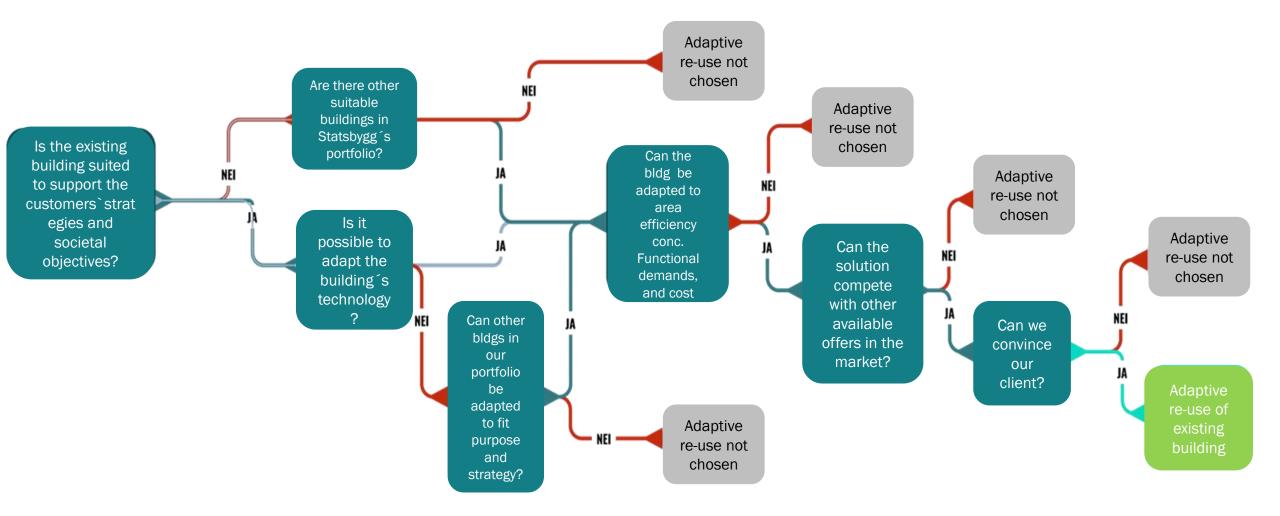
GHG-emissions from material use to be reduced

The public **construction** sector – work **together** with the industry to apply materials with lower GHG-emissions

Utilize existing public **buildings** – prefer existing before new

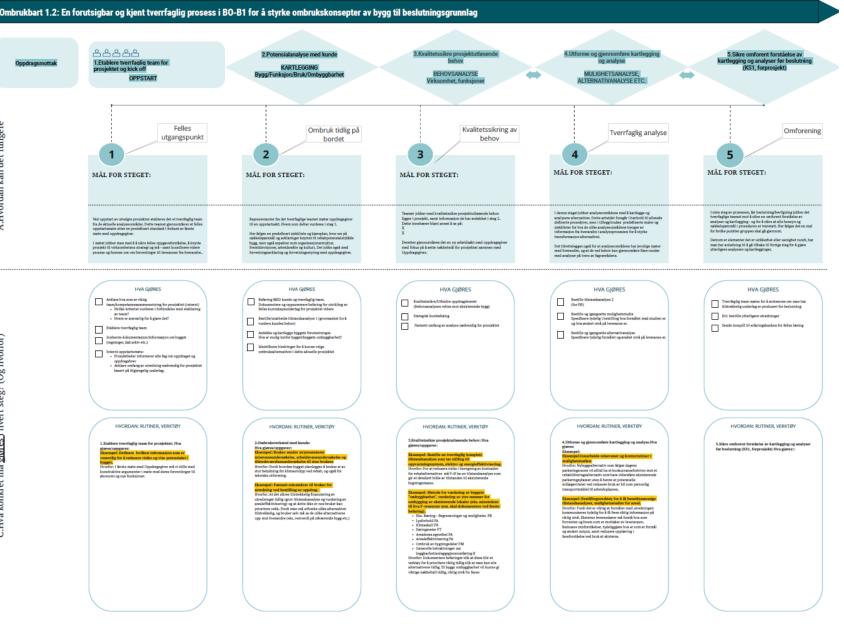
Reuse building components where possible and **sufficient**

Cost-effective energy efficiency measures to be implemented Address the possibility to install renewable energy production at the building Strategi



Two levels: reuse of buildings – and reuser of building materials

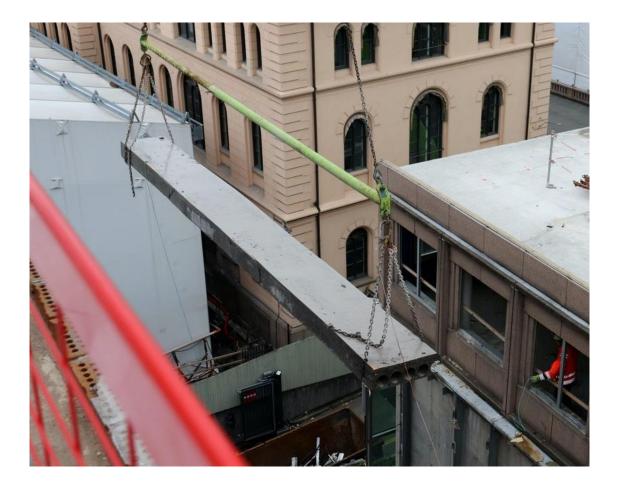
New built or re-use? A simplified analysis of key decision points


METHOD FOR RE-USE OF BUILDINGS

Aiming for a predictable and transparent interdisciplinary process to strengthen the quality of concepts re-using existing buildings in early analysis stages

STATSBYGG

C:Hva konkret må <u>gjøres i</u> hvert steg? (Og hvorfor)

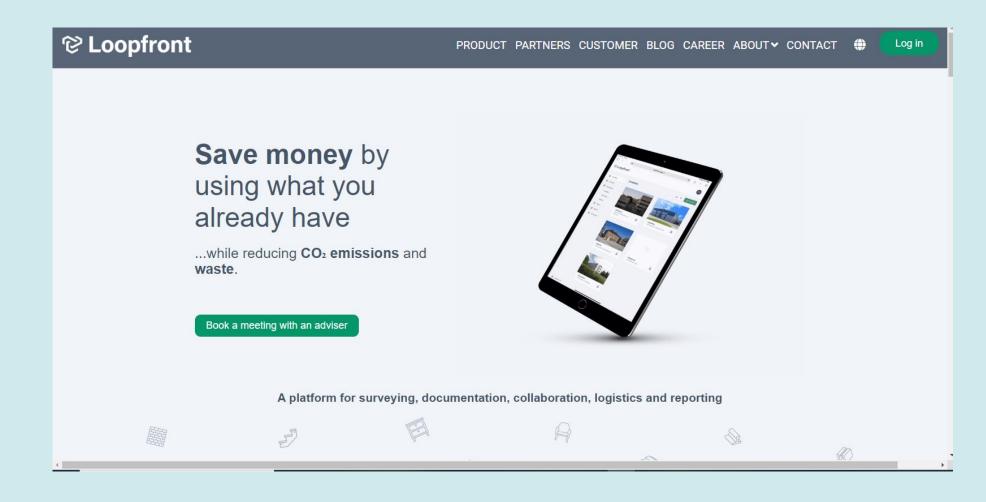


Circular ambitions – reusing materials

Statsbygg made guidance on how to evaluate reuse potential

NYHETER

Ny veileder for kartlegging av ombruk


Å bruke byggematerialer om igjen er et viktig klimatiltak. På Arendalsuka lanserte Statsbygg og Grønn Byggallianse en ny veileder for bestilling av ombrukskartlegging før riving og rehabilitering av bygg.

PUBLISERT 17.8.2021 FOTO VEIDEKKE



Building experience on reuse platforms

Madaster – tool to implement requirements in contracts?

STATSBYGG

Overcome barriers – Statsbygg reuse building cover as a storage centre for reusable materials

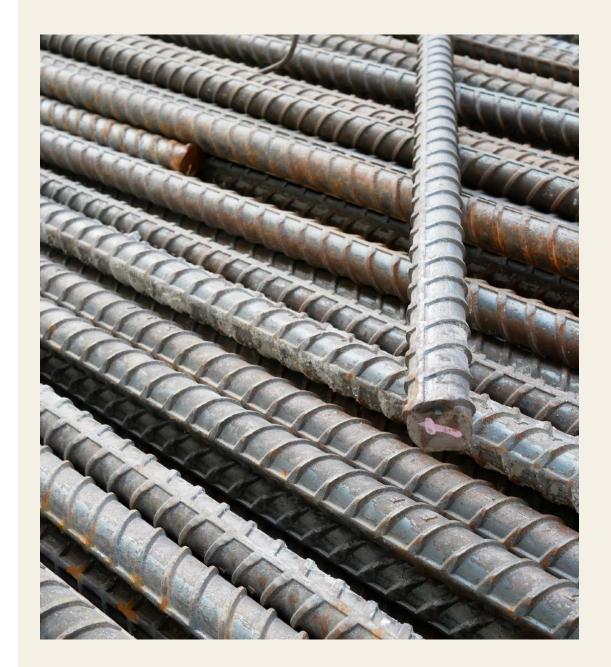
STATSBYGG

Standardizing performance on reused products

Krav til 1)	kompetanse for utarbeidelse av bruksspesifikk ytelseserklæring 1) ja/nei 2) kompetansekrav Nei 2) Ikke relevant
Ytelser	
	Sortering fasthetsklasse: Ikko rolovant
	Skjevhet: Visuell kontroll, se retthetskrav OK
	Store sprekker og skruehull Forenklet visuell kontroll OK
	<i>Fukt</i> Normverdi ikke over 20% trefuktighet. Ja / Nei (Håndsjekk. Ved mistanke sjekk med fuktmåler eller <u>sortér</u> ut.)
	Råte og mugg Visuell kontroll Ja / Nei
	Arstall: (Impregnert trevirke eldre enn 2002 har arsen)
	Gammel impregnering / giftstoffer:
	Skadedyr Visuell kontroll Ja / Nei
	Støtsskader: Visuell kontroll Ja / Nei

Establishment methods and practice

- How to sell or give away reused products
- How to document quality when reusing
- What incentives or contract requirements will support reuse


Circular ambitions – stimulate the use of materials produced from recycled raw materials

STATSBYGG

Requirements in contracts

- Reinforcing steel 100 % produced from scrap steel
- Aluminium in facade minimum 75 % recycled content
- Minimum three products free to select – shall include minimum 80 % recycled content
- Waste sorting at construction site minimum 90 % sorted in other fractions than mixed waste

CASE 02.

KONKURRANSEFORM: TOTALENTREPRISE Byggplater i resirkulert plast til samisk nybygg

Byggplater i resirkulert plast til samisk nybygg

Det Samiske Nasjonalteatret Beaivváš og Samisk videregående skole og reindriftsskole skal samlokaliseres i Kautokeino. Statsbygg er byggherre og Econor i Tromsø er hovedentreprenør for byggingen.

Kontrakten Statsbygg har inngått med Econor er en totalentreprise med krav om at det skal. identifiseres minst 3 produkter som skal inneholde mer enn 80 % resirkulerte råvarer

Omlag 20 tonn resikulert plast i nybygget

Totalt vil det dreie seg om innkjøp av ca 35 tonn isolasjonsplater, ca 1600 kg føtter til anleggssikring og 400 avfallssekker til nybygget. For å estimere hvor mye dette innkjøpet vil resultere i økt bruk av resirkulert plast, har vi satt opp følgende regnestykke:

Produkt	Areal m ²	Tykkelse m	Volum m ³	Massetetthet kg/m³	Total masse tonn		Mengde pcr tonn
EPS	6000	0,25	1500	22,00	33	50	16,50
XPS	900	0,1	90	24,45	2,2	50	1,10
Sum							17,60

*massebalanse i produksjon pr år

	Antall	Vekt pr stk	Total masse kg	Andel pcr %	Mengde pcr tonn
Anleggsføtter	200	8	1600	100	1,60
Avfallssekker	440	0,14	60,1	100	0,06
Sum					1,66

Basert på dette estimatet, vil nybygget i Kautokeino kunne bidra til nesten 20 tonn med resirkulert plast.

KRAV OG DOKUMENTASJON

Statsbygg satte følgende krav og dokumentasjon i MOP-en til nybygget:

Krav

Det skal identifiseres minst 3 produkttyper som skal inneholde mer enn 80 % resirkulerte råvarer. Det kan være plastprodukter, gulv med knust stein, betong eller flis, treplater, gipsplater, isolasjon etc. Krav som sikrer anskaffelse av disse produktene skal inkluderes i MOP.

Dokumentasjon

Dokumentasjon må framlegges for hvert produkt. Resirkulert innhold i det aktuelle produktet må komme tydelig fram.

Viktig med leverandørkartlegging og oversikt over produkter i resirkulert plast

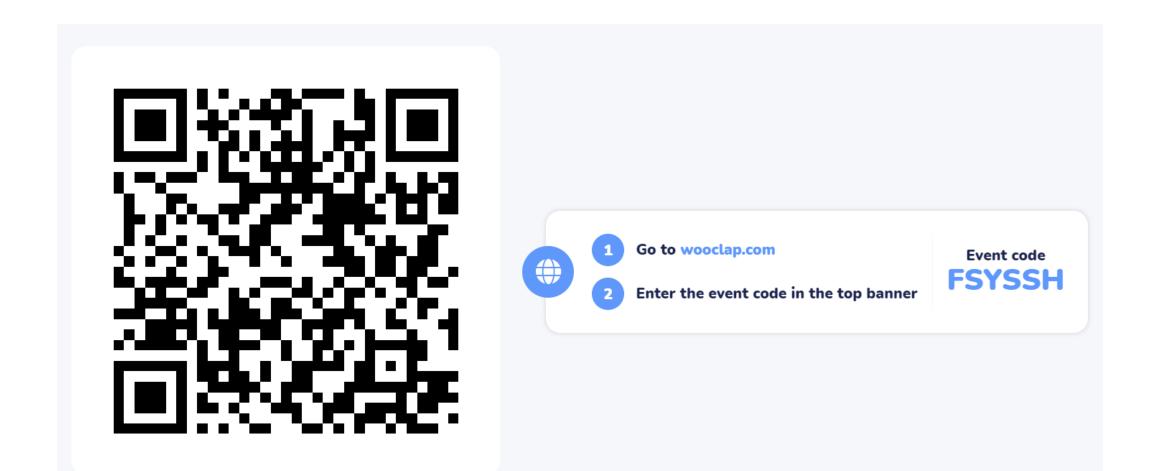
Prosjektet «Økt bruk av resirkulert plast» hadde i mai 2021 dialog med Statsbygg om krav og dokumentasjon til bruk av resirkulert plast i byggeprosjekter. Våre kommentarer ble sendt Statsbygg, og innspillene ble hensyntatt og benyttet i MOP-en knyttet til totalentreprisen for det samiske nybygget. I tillegg har prosjektet gjennomført en enkel leverandørundersøkelse for hovedentreprenøren.

 Det å få oversikt over hvilke produkter som er produsert i resirkulert plast og hvem som produserer dem - inkludert kontaktinfo, er veldig nyttig for oss. Videre er det viktig at leverandører kan dokumentere resirkulert innhold i form av EPD-er eller ulike sertifiseringer.

Raymond Isaksen, innkjøpsleder i Econor

For Statsbygg har det å kunne tilby byggeprosjektet hjelp til leverandørundersøkeler og det å kunne gi dem oversikt over hvilke produkter som finnes på markedet, vært et vikitg bidrag for å øke bevisstheten omkring det å benytte resirkulert materiale i nybygg og rehabilitering av bygg.

 Vi ser også hvor viktig det er å tørre å sette krav til våre entrepreprenører og bidra til å skape et bedre og større marked for produkter i resirkulerte materialer, sier Kristine Kolhus, fungerende avdelingsdirektør i Faglig ressursenter i Statsbygg.


Indicators at buildings/ infrastructure level

BUILDINGS/ INFRASTRUCTURE LEVEL

- At concept stage: comparison of asset life cycle costs
- At concept stage: comparison of asset life cycle assessment
- At design stage: Material intensity/ dematerialisation
- At design stage: reused content
- At design stage: recycled content
- Designed for adaptability and flexibility
- Designed for disassembly/ deconstruction
- Construction waste generated on and off site
- Hazardous waste generated during construction
- Construction waste reused, recycled, recovered, landfilled

- Construction related waste generated through in-use/ refurbishment cycles
- Effective utilisation of building (e.g. levels of occupancy) or asset; Intensiveness of use
- At end of use of building/asset: proportion of building/asset retained (mass) for further use
- Demolition waste generated
- Hazardous waste generated at demolition
- Demolition waste reused, recycled, recovered, landfilled

Join us for an interactive session on wooclap!

We will now hear one presentation on the application of circular approaches at urban level

Circular approaches at process / organisation level

By Wouter Schick (Senior consultant sustainable design and development Arcadis Netherlands, member EFCA European Green Deal committee)

Wouter Schick

Circular approaches at process / organisation level

wouter schik

Circularity, yes but ...

- Unclear
- Complex
- Requires new knowledge and more time
- New and unknown risks

Not only What, but also How

ARCADIS

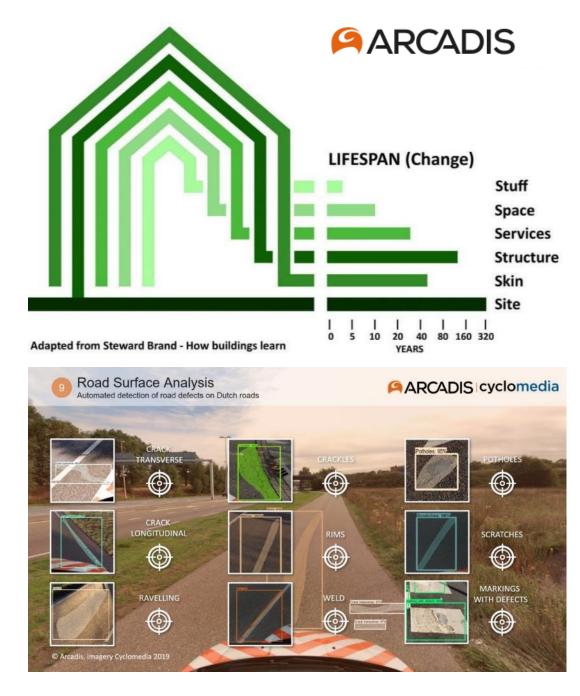
Question municipality

Best circular solution for making a specific street climate robust: permeable paving or infiltration sewer?

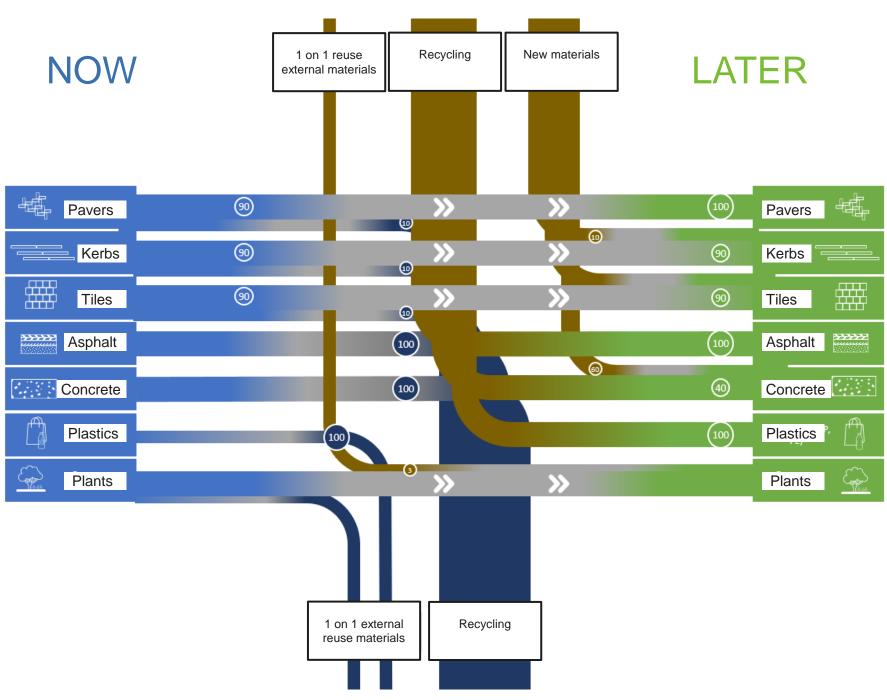
Solution

- Redesign barren greenspaces between buildings into lush playgrounds where water can be stored and infiltrate
- Reuse disbanded overflow system into nearby wood to reduce drought problems
- Less materials, lower TCO, more added value

What is required?


Make it as easy and clear as possible!

- 1. Program / plan ahead
- 2. Standardise and automate
- 3. Structured cooperation and sufficient capacity
- 4. Learn and improve by doing and monitoring


[1] Program / plan ahead

- Important questions:
 - What is there now and what does this mean or require for the future?
 - How is the context changing in the next 10-30-... yrs? (use, requirements, availability of materials etc.)
 - What does it mean for real estate portfolios and different types of infra-assets?
 - What does that mean for design and (in/outcoming) materials?
 - What does this require regarding partnerships, legal and financial arrangements, innovation?
- Program / plan ahead: development strategy, roadmaps, portfolio- and asset management

Material flow analyses

- Do you know what you have and going to get and going to need?
- Is your (asset management) system ready for this?

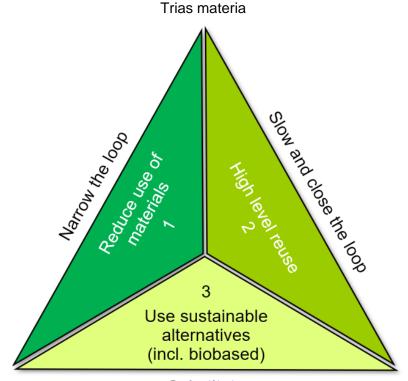
Example: sustainable procurement of concrete paving materials Amersfoort (NL)

- Biggest environmental impact outdoor material use in the city
- Traditional: challenge per project, outcoming materials to contractor
- Result: hotchpotch of products and environmental gains (not future proof)
- New strategy: long term contract with single supplier for reuse, recycling and new materials
 - All outcoming concrete paving materials first to be checked for reuse at product level, then to be recycled in new products
 - New products with >50% recycled materials and >50% better LCA
 - 1% higher product cost, but cheaper at project level (less surcharge costs)

ARCADIS

Example: new Kazernekwartier neighborhood development Venlo (NL)

- **Strategy 1:** reuse all old buildings former military base (history/identity)
- **Strategy 2:** best (circular etc.) living conditions for the future by getting more with less due to combination of:
 - Robust high quality very energy efficient compact housing
 - Community development with sharing economy: from ownership to flexible facilities and services, including shared mobility solutions (Mobility as a Service)
- Requires new ways of cooperation with new types of legal and financial agreements



[2] Standardise, automate

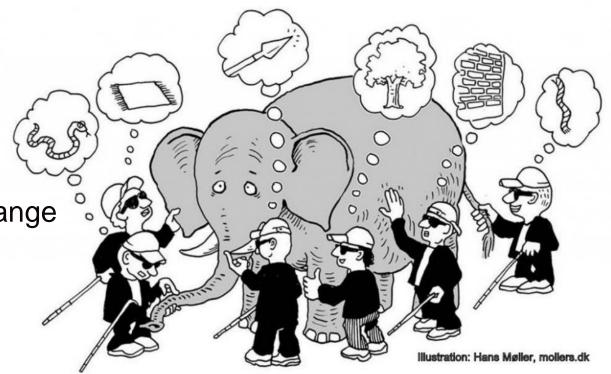
 Common language, conceptual framework, (set of) indicators and requirements:

– what is it?

- when is it good/bad for what type of question?
- how do you weigh the indicators/requirements?
- Translate into standard documents and policies for organisations and at project level (f.e. procurement)
- Use software for support (BIM + management systems + material passports/logbooks etc.)

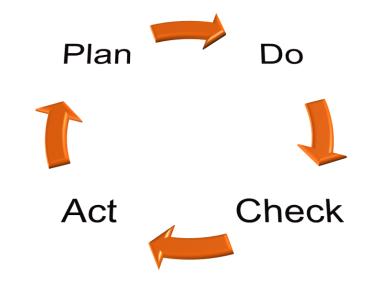
Substitute

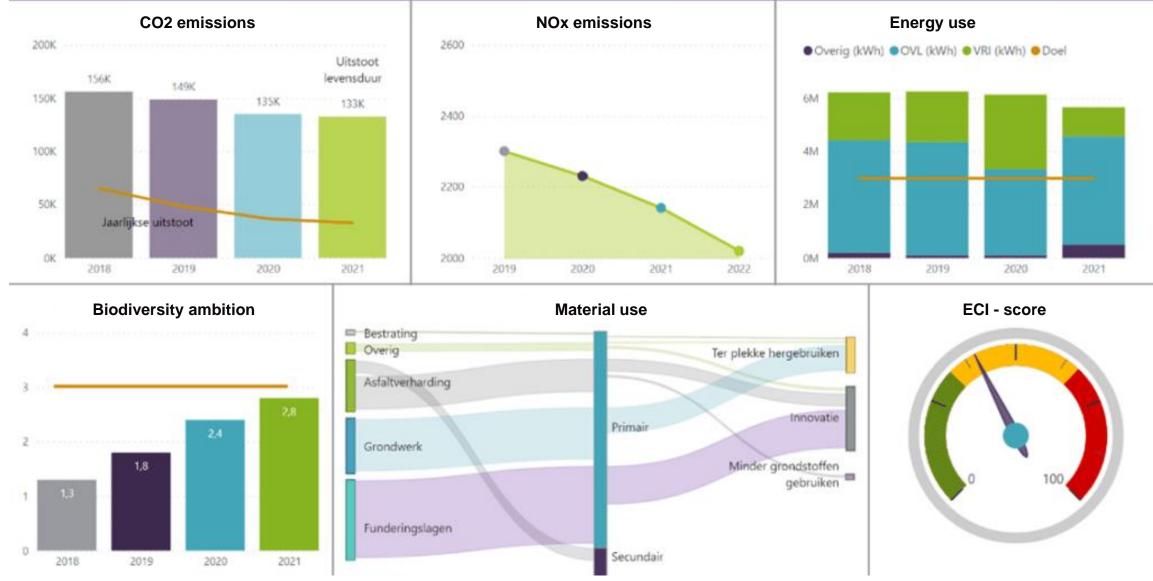
Future proof / future value:


- (opportunities for) value proof future reuse
- · (opportunities for) increased life span, useability

Added value

[3] Structured cooperation and sufficient capacity in organisation

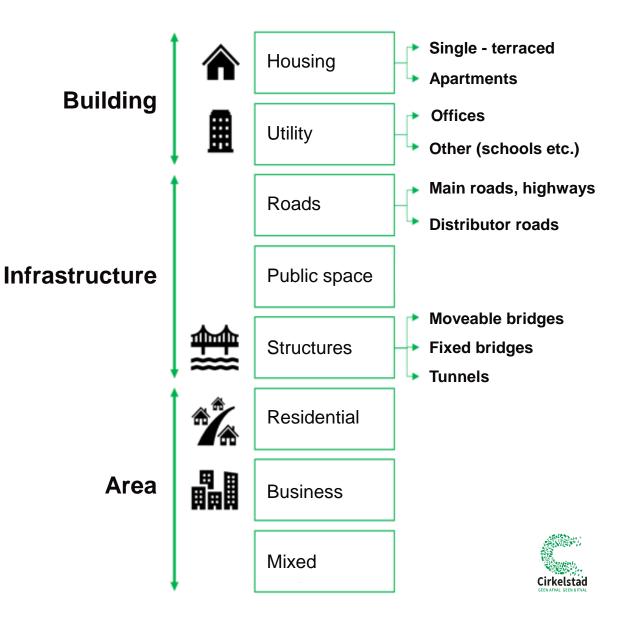

- All relevant parties identified and connected
- Clear responsibilities and (design)processes
- Managing relations and dependencies (short and long term)
- Right capacities: (shared) knowledge and experience
- Clear data protocol (how to collect and exchange what data)


[4] Learn and improve by doing and monitoring

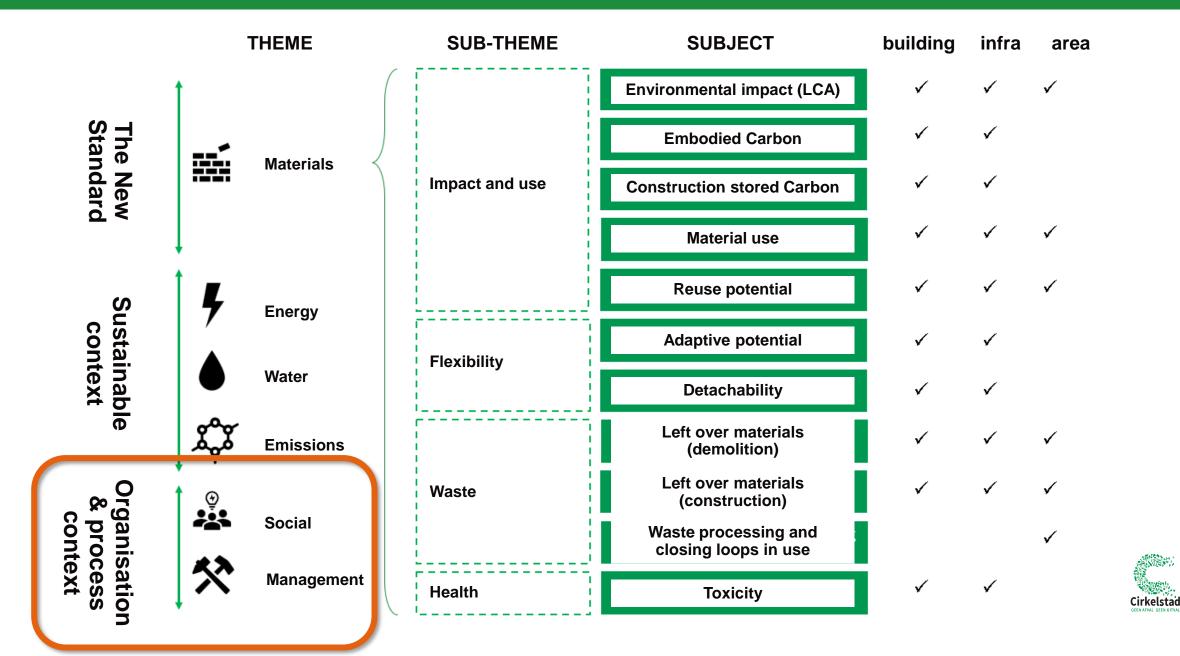
- Evaluate process
- Evaluate results
 - Number of procurements with which requirements regarding circularity achieved what?
 - How much materials was reused at projects (direct, indirect and at what level: object, raw material)?
 - New expected life span, TCO, added value?
- Adjust processes, guidelines, policies etc. where necessary

Dashboard Monitoring Infra

CROM


© Arcadis 2023

Duurzaam GWW

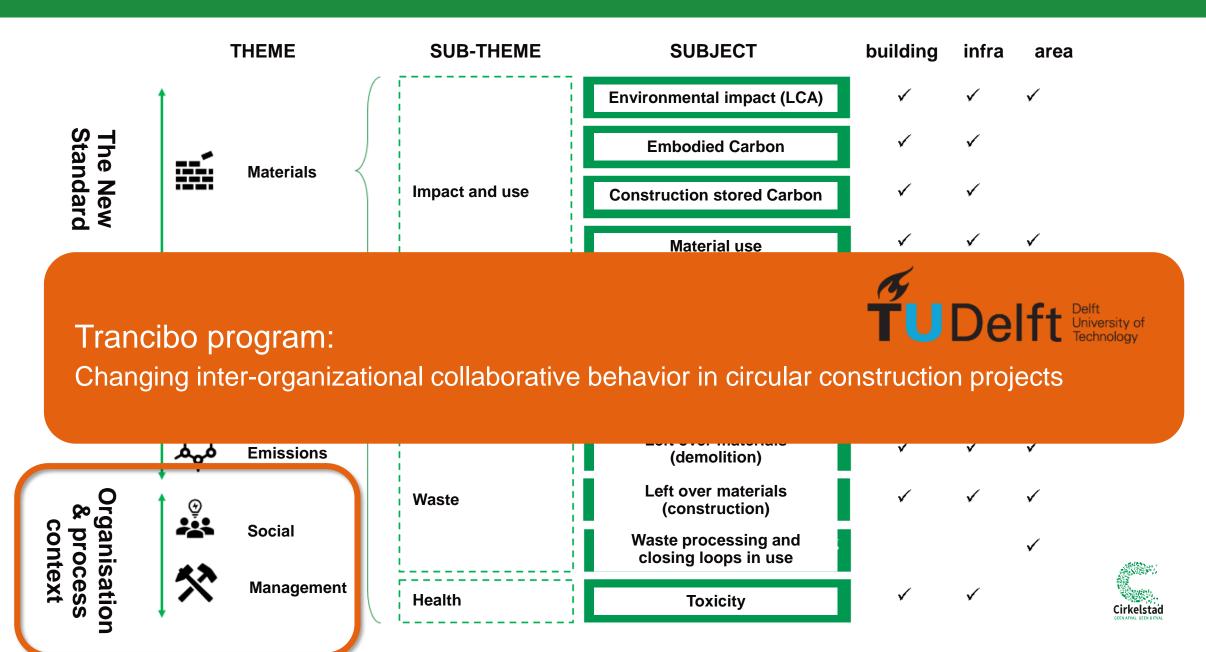


Example: the New Standard

Common framework and language regarding circularity **including processes** in the Netherlands [under construction]

The New Standard | 0.4

Questions organisation / process context


- Participation:
 - To what level are (future) users involved?
- Procurement:
 - Is it clear what the performance should be (short and long term)?
 - How open is the task specified?
 - Is it clear what circular indicators and requirements are relevant and why?
 - Is TCO part of the specifications?
- Contract:
 - Are costs/benefits and risks of circular building been identified and dealt with, with the project team as a whole?
 - Is residual value been taken into account?

- Cooperation and process:
 - Are all necessary circularity partners identified and part of the process?
 - What kind and what amount of cooperation is there within the project team and with external partners outside the project team (suppliers etc.)?
 - Are all roles and responsibilities clear within the project team?
 - Are all consequences regarding circular building during the whole process (from design to in use) been identified and organised?

Internal organisation:

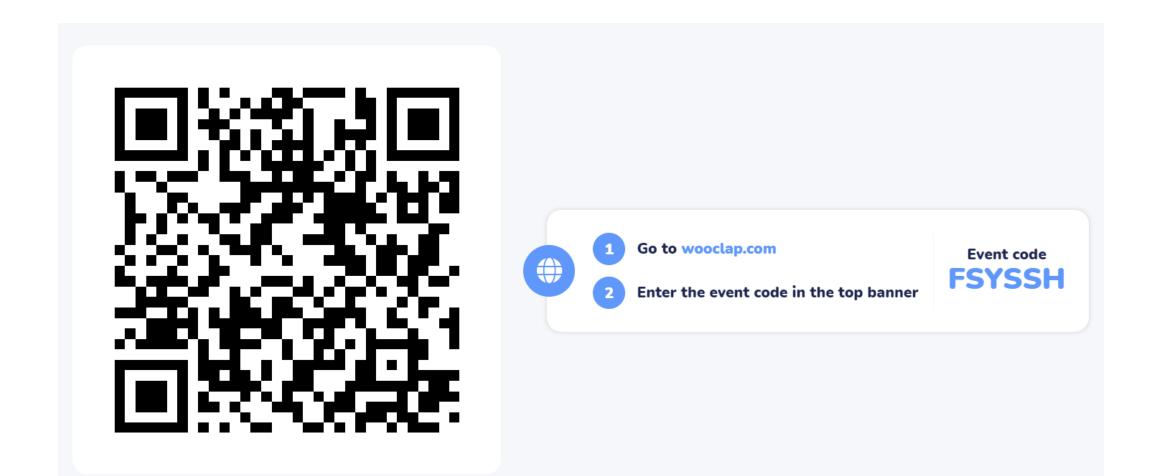
- Are all roles and responsibilities clear within the organisation regarding the project?
- Is knowledge shared and monitoring and evaluation part of the process?
- Is data collected and shared for maintenance, asset management and other future purposes?

The New Standard | 0.4

Creating sustainable perspectives

starting tomorrows sustainability today

wouter schik


Arcadis. Improving quality of life.

Indicators at organisational level

ORGANISATIONAL LEVEL

- Refurbishment/transformation rate of buildings/infrastructure portfolio
- Predicted service life of buildings/infrastructure portfolio
- Average reused and recycled content in new buildings/infrastructure (circular inputs)
- Reused and secondary content input
- Non hazardous waste arisings
- Hazardous waste
- Waste management routes
- Requirements set for specification of circular economy approaches including recycled + reused products and materials
- Requirements set for pre-demolition audits and subsequent implementation

Join us for an interactive session on wooclap!

We will now hear one presentation on the application of circular approaches at urban level

Be Circular: Reuse in circular building sites By Yannick D'Otreppe (Project manager - Facilitator Sustainable buildings trainings, Brussels Environment)

Yannick D'Otreppe

FORMATION BÂTIMENT DURABLE

BE CIRCULAR

Reuse in circular building sites

Yannick d'Otreppe Project manager - Facilitator Sustainable buildings trainings, Brussels Environment

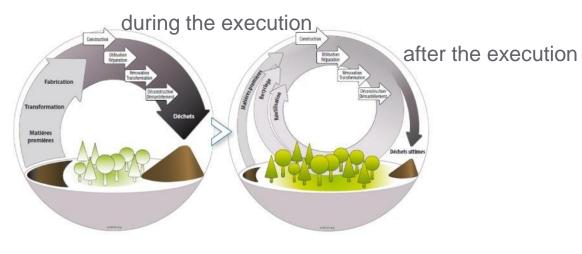
CIRCULAR BUILDING SITES

NContext

NThematics

REUSE IN CIRCULAR BUILDING SITES NPresentation of 10 projects NOpportunities and threats CONCLUSIONS

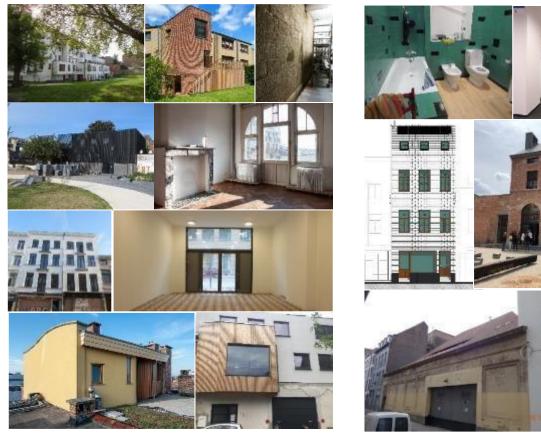
CONTEXT


Project calls « Be Circular – Be Brussels »

- NPREC
- NBuilding sector
- NFor construction companies
- N Subsidy (now 30,000€ max/project) + follow-up +
- communication

Building sites optimizing management

NOf material resources NOf human resources Before the execution



CONTEXT

Laureates

N36 projects between 2016 & 2020

9 projects in 2016

CONTEXTE

5

Laureates

N36 projects between 2016 & 2020

6 projects in 2018

7 projects in 2019

8 projects in 2020

CIRCULAR BUILDING SITES REUSE

INITIATIVES

CONCLUSIONS

CONTEXT

6

CIRCULAR BUILDING SITES

NContext

NThematics

REUSE IN CIRCULAR BUILDING SITES NPresentation of 10 projects NOpportunities and threats CONCLUSIONS

			CIRCULAR BUILI	DING SITES	REUSE		INITIATIVES	CONCLUSIO	NS
		8	THEMATICS						
				Managen Managen			esources resources		
		(demountability		Training	of the work	force		
				Reversi	ble buildir	ng design	L	ocal workforce	
		;	adaptability	subs	sequent Re	on site	Recycled, bio	based materials	
					incoming		ite		
	Synergies between companies & building sites Companies of socio-professional integration				bouv	vteam			
				Intergated team management Lean					
			Waste preve	ntion & man	agement			BIM	
					Main	tenance of e	existing building	S	

CIRCULAR BUILDING SITES

NContext

NThematics

REUSE IN CIRCULAR BUILDING SITES

NPresentation of 10 projects

NOpportunities and threats

CONCLUSIONS

CONCLUSIONS

¹⁰ WARLAND 238 [GLOBALART CONCEPT]

Renovation of a townhouse

Reuse:

NExterior joineries

NBricks

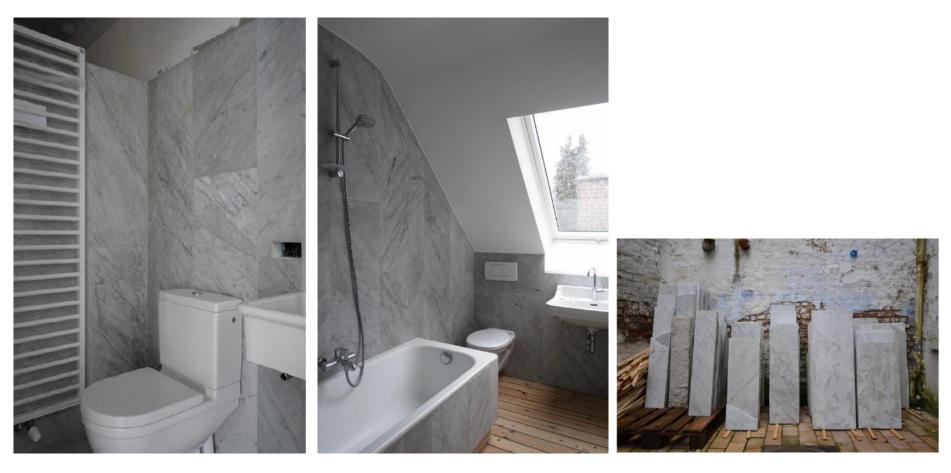
NRadiators

NKitchen furniture

Ν...

Almost 6 tons of reused materials matériaux (on site of incoming)

Crédit: Lionel Billiet



CONCLUSIONS

¹¹ WARLAND 238 [GLOBALART CONCEPT]

Reused marbel in the bathrooms

Crédit: Lionel Billiet

¹² CLOS DUPONT [ECO CONSTRUCT GROUPE]

Extension of a townhouse

Reused bircks

Extension with reuse in the whole project:

NFrames

NWindowsills

N Sanitation

N Radiators

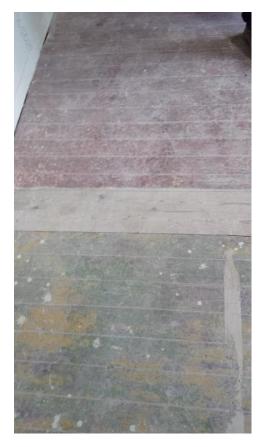
N Clinkers

Ν...

+ 6 tons of reuse materials (on site and incoming flow)

a Crédit: VLA-architecture – Sophie Boone

Crédit: Laurent Brandajs


Crédit: Bernard Boccara

¹³ DEBATTY [GILLION CONSTRUCT]

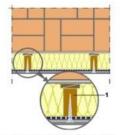
Renovation of social housing – Public contract

Reuse of parquet

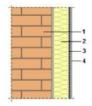
N1.500 m² of reused parquet

Crédit photos: Bruxelles Environnement

CONCLUSIONS


¹⁴ DEBATTY [GILLION CONSTRUCT]

Preparation for reuse


NInternal insulation N1.700 m² dismountable

 Latte, ayant l'épaisseur de l'isolant, fixée mécaniquement à la maçonnerie et régiée à l'aide de cales. L'entreaxe des lattes est d'environ 40 cm.

¹⁵ HORTA ONSS [ENTREPRISES LOUIS DE WAELE]

Refurbishment of an office building

Reuse integrated in the specification of the public contract

- NReuse of partition walls
- NReuse of HVAC
- N486 m² of insulation reused off site
- N610 m³ of materials reused on site

TIVOLI [BPC] 16

Renovation of a Belgacom building in housing

Reuse on site:

N130 m² of floor tiles

NYellow bricks

Ν...

Crédit Bruxelles Environnement

Crédit: Rotor

Crédit: Rotor

Crédit: Bruxelles Environnement

CONCLUSIONS

17 TIVOLI [BPC]

Reuse off site:

NDoors NWall tiles N

Sanitation N

. . .

18 TIVOLI [BPC]

Inventory realised before execution:

A. Seront récupérés avec certitude :

Dans cette catégorie sont mentionnés les quantités de matériaux que Rotor prévoit de démonter, sous réserve que l'opération se dérouie dans les conditions prévues par la convention. Le commanditaire peut intégrer le fait que ces élements auront quitté le bâtiment après le passage de Rotor.

		Type d'élément	Quantité à récupérer	Masse (éval.)
v		Carrelage céramique 10x10 cm, damier rouge / beige moucheté	200 m² (>400 m² en tout dans le bâtiment, ~50 % de perte au démontage)	5600 kg
v		Carrelage mural émaillé jaune	140 m² (~190 m² en tout dans le bâtiment)	3100 kg
v		Tablettes de fenêtre en marbre, épaisseur 2 cm	Min. 60 m courants (tout)	850 kg
V	. The	Manteaux de cheminées en marbre	4 pc	500 kg
	TOTAL			10.05 tonnes

C. Éléments non-réutilisables :

Dans cette catégorie sont mentionnés des éléments dont le potentiel a été examiné, mais qui se sont avérés non-réutilisables

	Type d'élément	Raison pour laquelle le matériaux n'est pas réutilisable
X	Châssis de fenêtre	Trop abîmés, plus aux normes, pas de valeur esthétique ou patrimoniale particulière
x	Radiateurs en fonte	Fêlés par le gel
X	Sols en carrelage de la cave : dalles 20 x 20 cm rouges et beiges, 380m2	Trop difficiles à démonter sans dommages.
X	Carrelage rouge 5x5 cm, ~33 m²	Carreaux trop petits : nettoyages des joints trop coûteux en temps

¹⁹ TOUR À PLOMB [ENTREPRISES JACQUES DELENS]

Renovation of an old foundry to a theater, gymnasium, library, ... public contract

Reuse on site

- N60 m³ of bricks
- N9,5 t of wood beams (oak)
- N67,5 t of blue stones
- N0,5 t of formwork battens

Crédit: Bernard Van Damme - Source: Opalis

Crédit: Bernard Van Damme Source: Opalis

²⁰ CHANTIER VANDERGOTEN [ENTREPRISES VALENS]

Demolition of a warehouse and construction of an appartement building

- NReuse of +/- 40.000 bricks on site
- N Demoliton by: De Meuter / cleaning and storage: Travie
- N 614 m² of bricks reused on site + 1.700 m² of bricks from other building sites
- N Tests (resistance and frostiness) on reused bricks

Crédit photos: Bruxelles Environnement

²¹ CHANTIER VANDERGOTEN [ENTREPRISES VALENS]

Demolition of a warehouse and construction of an appartement building

Crédit photos: Bruxelles Environnement

22 INCLUSIO 2

Refurbishment of an office building into affordable rental housing

Reuse offsite

NRetrival :

- Doors
- Carpet
- Glass partitions
- Pictograms
- Lighting
- Sanitary equipment
- Raised floors

Crédit : Inlcusio

Crédit : Bruxelles Environnement

CONCLUSIONS

23 CHANTIER RUE DE L'EST [ENTREPRISE DECO SEGE ROM]

Renovation of a classical townhouse in 3 housing units

Reuse on site:

- N35 m² of cement tiles
- NExterior stairs
- N Fireplace mantels -> Bathroom shelves
- NBluestones -> Outdoor facilities
- Nnterior doors
- NLumber

CONCLUSIONS

24 CHANTIER RUE DE L'EST [ENTREPRISE DECO SEGE ROM]

Reuse off site:

N77m² wooden floor

NStairs

Source: S. Van Butsele

25 CHANTIER RUE DE L'EST [ENTREPRISE DECO SEGE ROM]

Incoming reuse:

- N4 m³ of bricks
- Nronsmith
- NWall coverings

Source: S. Van Butsele

Source: Bruxelles Environnement

28 MUNDO-LAB

Refurbishment of an office building

Reuse on site, offsite and incoming

NReuse inventory

- N On site reuse: external glazing (internal partitions), removable partitioning, decorative panels, lighting fittings, mineral wool insulation (15 tons)
- Nncoming reuse: doors, furniture, wood (tables), column covers (16.5 tons)
- N Off-site reuse: floor carpet tiles, glass partitions (25 tons)

Crédit : Bruxelles Environnement

²⁹ OPPORTUNITIES AND THREATS

Opportunities and threats

N Sensibiliy of the company / of the site manager to reuse

NUncertainty

- at the amount of materials effectively reusable (fixations,...)
- → Impact on the **planning** of the building site (deconstruction, reconstruction)
- Organize dismounting tests ahead of the execution
- \rightarrow informations on techniques and tools to dismount
- \rightarrow anticipation for handling
- \rightarrow evaluation of the time needed to dismount/remount
- NNeed of **storage** spaces for materials
 - Possibility to work on just-in-time basis

³⁰ OPPORTUNITIES AND THREATS

Opportunities and threats

N Workforce needed to extract, to prepare and to remount the elements

- \rightarrow cost of workforce vs cost of new elements
 - Development of the profession of « reclaimer »

NGuarantees on the reused materials

- Possibility to use materials to other purpose
- Development of a materials passports

Ν...

³¹ OPPORTUNITIES AND THREATS

Opportunities and threats before the execution

- N Sensibility of the client and the design team to reuse
- N Existence / making of a **pre-demolition inventory** and a **reuse plan** on the basis of the inventory
 - Who make the inventory?
- NKnowing of reuse channels
 - resellers: existence of stable channels of supply (bricks, parquet,...)
 - contacts with other building sites/companies
 - How to activate contacts, build a network?
- NHarvest (and storage) of materials in amount
 - \rightarrow development of the project and price offers more accurate researchs take a lot of time
 - architectural constraints linked to reuse

³² OPPORTUNITIES AND THREATS

Opportunities and threats before the execution

N Requirements linked to **regulations** (security, energy,...) N Identical **taxes** on reused materials to new materials N Put **variants** in new materials in specifications N **Reserved budget** linked to reused materials N...

CIRCULAR BUILDING SITES CONTEXT THEMATICS REUSE IN CIRCULAR BUILDING SITES NPresentation of 10 projects NOpportunities and threats CONCLUSIONS

34 CONCLUSIONS

Reuse in Brussels is alredy happening on big and little building sites \rightarrow projects and reference players exist

Feedbacks show threats but also a lot of opportunities to reuse, on site and before, in design phase

Numerous initiatives and tools exist or still under development to promote reuse

 \rightarrow Transition is in its way...

... but for the offer (in materials, in the companies,...) to increase, the demand needs to increase aswell

 \rightarrow Important part to play for public owners and designers.

35 CONTACT

Yannick d'Otreppe

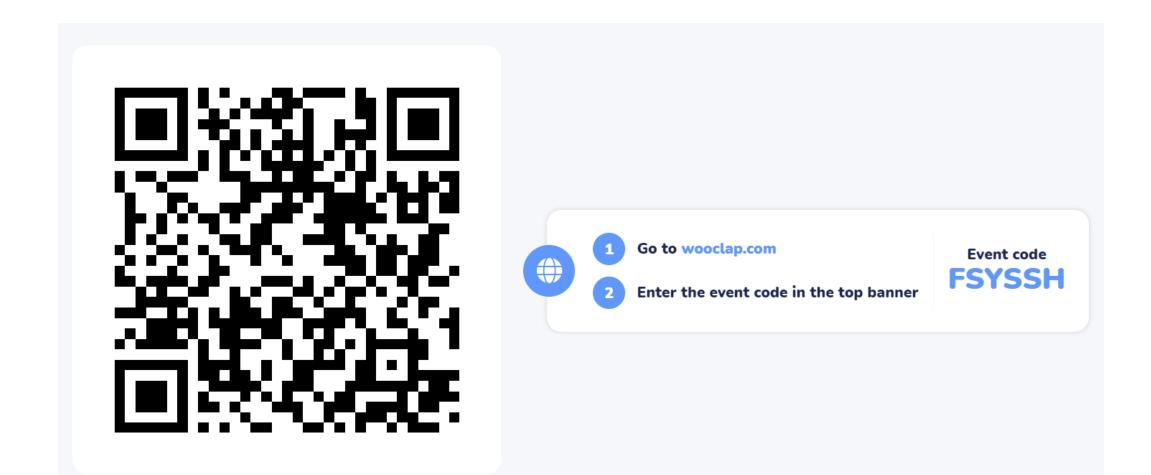
Head of service

Brussels Environment

C + 32 2 775 78 18

⋈ ydotreppe@environnement.brussels

THANK YOU



Indicators at urban level

URBAN LEVEL

- Demolition waste generated
- Recycling/recovery rate of construction and demolition waste
- Refurbishment and transformation rate relative to new construction
- Demolition rate
- Average age at demolition

Join us for an interactive session on wooclap!

We will have four experts at today's panel discussion

Evert Schut

- Senior advisor
- Dutch Ministry of Infrastructure and Water management

Kaie Small-Warner

- Senior Consultant .
 - CIRCuIT

Christophe Sykes

- Director General
- Construction Products Europe

Sue Arundale

Director General EFCA .

Ask questions to our panellists and vote for them on wooclap!

EU TARGETED SURVEY

Support our work in replying to our short, targeted survey!

Thank you.

Luc Chalsège

Deloitte
Contact: lchalsege@deloitte.com

Gilli Hobbs

Reusefully **Contact:** gilli@reusefully.co.uk

Indi de Graaf

Deloitte
Contact: indegraaf@deloitte.com

Katherine Adams

Reusefully **Contact:** katherine@reusefully.co.uk