Deloitte.

The Deloitte Climate & Engineering Case Competition (DCECC)

2024 QLD Winner Green Tree Consulting

Ishaan, Kelly, Shreyas, and Siddesh.

Green Gully Resources

Haul Truck Electrification - Operational Readiness Plan

2024 Climate and Engineering Consulting Case Competition Green Tree Consulting: Ishaan Patel, Siddesh Karekal, Shreyas Raman, Mingxuan (Kelly) Zhou

Deloitte.

80

Executive Summary

Green Gully Resources' Company Position

GGR must overcome key challenges to meet its targets successfully.

Challenges Across the Value Chain

Green Gully Resources (GGR) is positioned to **capitalise** on the rise of electrified mine vehicles, but has important **metrics** to consider

Assets

211% increase in electricity usage
30% reduction in CO₂e emissions
Diversified renewable energy grids

Energy

Maintain **220t** payload capacity Reduce unnecessary costs Existing truck **waste management**

Training

Restructuring of **operator** tasks **Optimise** for site **safety**

Improve utilisation and maintenance

Positioned to learn from competitors in the WA resources industry

Analysis

GGR must proactively adapt to the evolving

Industry Trends

landscape of the industry

Electrification of haul trucks to reduce operating expenses

Investment into renewable energy sources to reduce emissions

Adoption of circular economy principles to minimise waste

GREEN TREE

view

Strate

mplementatio

Strategy 1: Decommission Plan Overview

Decommission trucks nearing EoL by 2029, and trucks with considerable life by 2039.

Truck Lifecycle Planning

Existing truck components should be used until **low residual value** and **high % life used** to extract maximum value and avoid unnecessary cost.

2029 decommissioning of EoL trucks aligns well with 2028 delivery of EV trucks, allowing for a **phased transition**. Trucks with considerable life can be used to **supplement** EVs and maximise **mine efficiency**.

Truck Component Residual Value Forecast Beginning 2028 – Repurpose engines from 6 trucks with considerable life Trucks with Considerable Life Component Residual Value Trucks Nearing EoL Component Residual Value Engine % used life \$2.0M 90% COMPONENNT RESIDUAL VALUE (\$ AUD) \$1.8M 80% End 2028 – Decommission 15 Trucks Nearing EoL \$1.6M 70% \$1.4M 60% 🖇 Beginning 2029– Decommission Remaining Trucks \$1.2M 50% **Nearing EoL** \$1.0M 40% 30% N \$0.8M 2035 – Decommission 7 Trucks with Considerable \$0.6M Life 20% \$0.4M TOTAL (10% \$0.2M 2039 - Decommission Remaining Trucks with \$0.01 0% Considerable Life 2035 2036 2037 2039 2029 2030 2031 2032 2033 2034 2038 2040 2024 2025 2026 2027 2028 YFARS

- CONSULTING -

Strategy

Impa

Strategy 1: Decommission Plan – Reusing Old Diesel Engines

GGR should adopt a circular economy model by repurposing 6 truck engines into electric generators

We Suggest...

6 Engines repurposed to electric generators

Utilisation rate to provide peak power

Remaining diesel trucks operational

from the spot market

Diesel rate = cost of diesel and maintenance cost of engines per GWh generated

Lower Costs

Key Benefits

Significantly lower price per GWh compared to buying on the spot market. CAPEX remains low at ~\$60,000 per engine for modification and installation.

Resilience and Flexibility

Each generator can produce up to $2MW^2$ of power, which will be utilised during peak consumption. This is available 24/7 and is not limited by access to sunlight or wind.

Time Savings

Diesel-electric generators are cheap to build and only take ~1 month to construct, as all maintenance services and tools already exist on site.

Existing Supply Chain

GGR already has supply chains in place for diesel supply and engine maintenance. Less demanding for grid infrastructure as some electricity is generated on site.

Strategy 1: Decommission Plan – End of Life Maintenance Analysis

GGR is recommended to decommission trucks before undertaking extensive component maintenance.

Trucks Close to End of Life

Trucks with Considerable Life

Overall, by implementing a strategic and effective truck lifecycle plan, GGR will avoid **unnecessary maintenance costs** before decommissioning the haul trucks.

GREEN TREE

Strategy

olementation

operation during transition to EVs

Strategy 2: Energy Management Plan - PPA

GGR should implement a PPA to prepare for significant future energy requirements

GREEN TREE

Overvie

Strategy

Implementation

7

Strategy 2: Energy Management Plan – Solar Farm

GGR should construct a 10MW solar grid to lower costs and enhance sustainability.

Phase 2: Constructing a 10MW Solar Grid

Diesel Generators

As cheap as the PPA, but more flexibility as to when to run them to produce energy as GGR owns them.

Spot Price

The most expensive and volatile source and should be used as a back-up

Solar Energy

The cheapest source of producing renewable energy (-51.7% to PPA) but high up-front investment costs

Solar provides the most value

GREEN TREE — CONSULTING —

Strategy

8 (Market Watch, 2024), (Sunny Renewables, 2023)

Strategy 3: Procedural Adaptation - Workforce Engagement

Employees directly interacting with EV haul trucks should receive priority training.

Key Considerations

By 2030, **half of the future workforce** will need high-level programming, coding and software skills¹

Ensure **transparent communication** with site employees to facilitate transition to automated operations

in Workforce Programs

Value Proposition

AG5 workday.

Facilitate EV

Truck Training

connecteam

Review Workforce Adaptation

Conduct periodic

assessments to

refresh training

Upskilling Priority

Supervisors: Coordinates the transition and monitors workforce progress.

Operators: Directly responsible for the dayto-day operation of the electric haul trucks.

Maintainers: Responsible for preventative maintenance. Their expertise can reduce downtime and optimise truck lifetime.

Record skills and

training on skill

management platform

Evaluate

Existing Skills

Reliable Training: Facilitate EV Truck Training from OEM e.g. Komatsu Training Academy

- Increased Safety Awareness: Refresh site safety knowledge with new assets
- **Operation Coordination**: Consistent operation of EV truck through standardised communications to improve site efficiency.

Strategy 3: Procedural Adaptation – Mine Facility Optimisation

GGR should position charging stations strategically to increase utilisation rate.

GREEN TREE

— CONSULTING —

×

GGR's Operational Readiness Plan for Successful Implementation.

3

Keep using all trucks

Operations Plan

3

Trucks Arrive

Operational

Diesel Generators

Finished

Negotiated

SF1 Construction

Strateg

Training Plan Developed

Finished

Completed

Impact

Risks and Mitigations

GGR must mitigate potential risks to ensure effective outcomes as planned.

Risk Matrix							Risk Description		Mitigations
Von	Severe	Significant	Moderate	Jerate Minor Negligible		1a	Infrastructure Availability	•	Complete additional solar grids by early-2028 Plan buffer regions into the electricity grid to account for the 211% electricity demand increase
Likely						1b	Compatibility for Alternate Use Case	•	Review safety and legal regulations for strong governance Consult the manufacturer for equipment recommendations
Likely			2a	2b		2a	Fluctuations in Solar Energy Production	•	Target diesel generator capacity at ~22% of maximum Build resilience into the solar grid through location diversification
Possible				3b		2b	Volatility in Energy Prices	•	Implement on-site redundancies (solar and diesel) Negotiate longer-term PPAs that hedge against price fluctuations in the electricity spot-market
Unlikely		1b	3 a			3 a	Safety Issues from Training Lag	•	Begin training before the arrival of the electric haul trucks Conduct regular reviews of operator performance in the early stages of implementation
Very Unlikely		1a				3b	Costs of Unscheduled Maintenance	•	Use data modelling to predict the frequency of component failures Implement regular reviews of maintenance schedules

Financial and Emissions Impact

Successful implementation of all 3 strategies will result in significantly lower costs and emissions

Appendix I

Truck	Purchase price	End of life (hrs)	Hours pa	Cycle time (hours)	Assumed loaded capacity (tonnes per round trip)	Cycles per year	Tonnes a year	Tonnes over remaining lifetime of truck	Remaning Lifetime maintenance cost	Cost per (over life	tonne time)
Truck with significant life	\$6,000,000.00	120,000	5,011	0.67	220	7,517	1,653,630	28,111,710	\$3,970,000	\$	0.14
Truck nearing EoL	\$6,000,000.00	120,000	5,011	0.67	220	7,517	1,653,630	11,575,410	\$2,120,000	\$	0.18

				SMU/year	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011
	Trucks with Considera	Cumulative SMU	5,011	10,022	15033	20044	25055	30066	35077	40088	45099	50110	55121	60132	65143	70154	75165	80176	85187	90198		
					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
COMPON	NTREPLACEMENTCOSTANALYSIS				2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
2	Components	Replacementfrequency	Price																			
costof	1 Power Module (Engine, Radiator, Alternato	25000	\$800,000.00		\$0.00	\$0.00	\$0.00	\$0.00	\$800,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$800,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$800,000.00	\$0.00	\$0.00	\$0.00
re place m	nt 2 Final drive	22,000	\$30,000.00		\$0.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00	\$0.00	\$30,000.00
	3 Grid blower motor front	14,000	\$5,000.00		\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00
	4 Grid blower motor rear	14,000	\$5,000.00		\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00
	5 Electric wheel motor left	20,000	\$250,000.00		\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00
	6 Electric wheel motor right	20,000	\$250,000.00		\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00
	7 Hub; Brake&SpindleLH	30,000	\$60,000.00		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00
	8 Hub; Brake&SpindleRH	30,000	\$60,000.00		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00
				Total	\$0	\$0	\$10,000	\$500,000	\$830,000	\$130,000	\$0	\$500,000	\$40,000	\$800,000	\$0	\$630,000	\$0	\$40,000	\$800,000	\$500,000	\$10,000	\$150,000
				Cumulative Total	\$0	\$0	\$10,000	\$510,000	\$1,340,000	\$1,470,000	\$1,470,000	\$500,000	\$540,000	\$1,340,000	\$1,340,000	\$1,970,000	\$1,970,000	\$2,010,000	\$2,810,000	\$3,310,000	\$3,320,000	\$3,470,000

				SMU/year	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011	5,011
	Trucks nearing EoL			Cumulative SMU	5,011	10022	15033	20044	25055	30066	35077	40088	45099	50110	55121	60132	65143	70154	75165	80176	85187	90198	95209	100220	105231	110242	115253	120264
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24		
COMPONENT	EPLACEMENT COST ANALYSIS				2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
2	Components	Replacement frequency	Price																									
cost of	1 Power Module (Engine, Radiator, Alternat	25000	\$800,000.00)	\$0.00	\$0.00	\$0.00	\$0.00	\$800,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$800,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$800,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$800,000.00	\$0.00	\$0.00	\$0.00	\$0.00
replacement	2 Final drive	22,000	\$30,000.00)	\$0.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00	\$0.00	\$30,000.00	\$0.00	\$0.00
	3 Grid blower motor front	14,000	\$5,000.00)	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00
	4 Grid blower motor rear	14,000	\$5,000.00)	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00	\$0.00	\$5,000.00	\$0.00
	5 Electric wheel motor left	20,000	\$250,000.00)	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00
	6 Electric wheel motor right	20,000	\$250,000.00)	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00	\$0.00	\$0.00	\$0.00	\$250,000.00
	7 Hub; Brake & Spindle LH	30,000	\$60,000.00)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00
	8 Hub; Brake & Spindle RH	30,000	\$60,000.00)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$60,000.00
				Total	\$0	\$0	\$10,000	\$500,000	\$830,000	\$130,000	\$0	\$500,000	\$40,000	\$800,000	\$0	\$630,000	\$0	\$40,000	\$800,000	\$500,000	\$10,000	\$150,000	\$0	\$1,310,000	\$0	\$30,000	\$10,000	\$620,000
				Cumulative Total	\$0	\$0	\$10,000	\$510,000	\$1,340,000	\$1,470,000	\$1,470,000	\$1,970,000	\$2,010,000	\$2,810,000	\$2,810,000	\$3,440,000	\$3,440,000	\$3,480,000	\$4,280,000	\$4,780,000	\$4,790,000	\$4,940,000	\$4,940,000	\$6,250,000	\$6,250,000	\$6,280,000	\$6,290,000	\$6,910,000
1																												

GREEN TREE - CONSULTING -

Strateg

Implementation

Appendix II

Description	Unit	Valu	e	Source			Operational Year	20	2024	2025	202	26 2027 3 4	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040
)iesel Truck Energy Requirement	GWh/yea	r	36	0 (McKinse	v)		Revenues		• •	-			5		,		,	10			13		15	10	
)iesel Truck Efficiency Bate	%		459	w.`			PPA Revenue	s -	s -	s -	s -	s -	s -	s -	s - s	- S	-	\$ - ·	s -	s -	s - s	-	s - s	-	s -
Jestrie Truck Efficiency Rate	04		000	14.			LGC Revenue Spot Price Savings	s - s -	s - s -	s - s -	s - s -	s - s -	\$ - \$ 2.229,479.18	\$ 1,221,279.89 \$ 2,318,658,35	\$ 1,270,131.09 \$ \$ 2,411,404.69 \$	5 1,320,936.33 \$ 5 2,507,860.87 \$	2.608.175.31	\$ - \$ 2.712.502.32	s - \$ 2.821.002.41	\$ - \$ 2,933,842.51	\$ - 5	3,173,244,06	\$ - 5 \$3,300,173.82 \$	3.432.180.77	\$ - \$3,569,468.00
lectric Fruck Enclency Nate	70		307	0			Total Revenue	\$-	\$ -	\$-	s -	S -	\$ 2,229,479.18	\$ 3,539,938.24	\$ 3,681,535.77 \$	3,828,797.20 \$	2,608,175.31	\$ 2,712,502.32	\$ 2,821,002.41	\$ 2,933,842.51	\$3,051,196.21	3,173,244.06	\$3,300,173.82	3,432,180.77	\$3,569,468.00
lectric Truck Energy Requirement	Gwn/yea	r	18	0			Expenses																		
nergy Contribution from Trucks	%		709	% (DAS Aus	tralia)		Expenses	s -	s -	\$ -	s -	\$ -	s -	s -	s - s	s - s	-	s - :	s -	s -	s - s	-	s - s	-	s -
otal Energy Requirement (pre-2028)	GWh/yea	r	10	8			Operating Costs	s -	s -	\$ 10,816,000.00	s -	s -	\$ 182,497.94	\$ 189,797.85	\$ 197,389.77 \$	205,285.36 \$	213,496.77	\$ 222,036.64	\$ 230,918.11	\$ 240,154.83	\$ 249,761.03 \$	259,751.47	\$ 270,141.53 \$	280,947.19	\$ 292,185.07
otal Energy Requirement (post-2028)	GWh/yea	r	28	8			Total Costs	5 -	5 -	\$ 10,816,000.00	5 -	3 -	\$ 182,497.94	\$ 189,/97.85	\$ 197,389.77 \$	5 205,285.30 \$	213,490.77	\$ 222,030.04	\$ 230,918.11	\$ 240,154.85	\$ 249,761.03	259,751.47	\$ 2/0,141.55 \$	280,947.19	\$ 292,185.07
							Taxation																		
olar Farm Theoretical Capacity	MWh/yea	r/SF	2167	0			Depreciation Taxable Income	s - s -	\$ - \$ -	s - s -	s - s -	s - s -	\$ 200,000.00 \$ 1,846,981.25	\$ 200,000.00 \$ 3,150,140.39	\$ 200,000.00 \$ \$ 3,284,146.01 \$	5 200,000.00 \$ 5 3,423,511.85 \$	200,000.00	\$ 200,000.00 \$ 2,290,465.68	\$ 200,000.00 \$ 2,390,084.30	\$ 200,000.00 \$ 2,493,687.68	\$ 200,000.00 \$ \$ 2,601,435.18 \$	200,000.00	\$ 200,000.00 \$ \$2,830,032.29 \$	200,000.00 2,951,233.59	\$ 200,000.00 \$ 3,077,282.93
Operating Efficiency Utilisation Rate	%		93,96%	%			Tax Paid	\$ -	\$ -	\$ -	s -	s -	\$ 554,094.37	\$ 945,042.12	\$ 985,243.80 \$	\$ 1,027,053.55	658,403.56	\$ 687,139.70	\$ 717,025.29	\$ 748,106.30	\$ 780,430.55 \$	814,047.78	\$ 849,009.69 \$	885,370.08	\$ 923,184.88
Colar Farm Expected Canacity	MWh/yea	r/SF	20361 13	2			Total																		
Viesel Constators Expected Canacity (day	MWb/yee	r/SE	1308.86	2 Q			Net Profit After Tax		s -	\$(10,816,000.00)	s -	s -	\$ 1,292,886.87	\$ 2,205,098.27	\$ 2,298,902.20 \$	5 2,396,458.29 \$	1,536,274.97	\$ 1,603,325.97	\$ 1,673,059.01	\$ 1,745,581.37	\$1,821,004.63	1,899,444.81	\$1,981,022.61 \$	2,065,863.51	\$2,154,098.05
Visit Cenerators Expected Capacity (day) Novinyea	1731	1000.000	0			Net Cash Flow	0	\$ - 00 1.00	\$(10,816,000.00)	\$ -	\$ - 83 0.75	\$ 1,492,886.87	\$ 2,405,098.27	\$ 2,498,902.20 \$	5 2,596,458.29 \$	1,736,274.97	\$ 1,803,325.97	\$ 1,873,059.01	\$ 1,945,581.37	\$2,021,004.63 5	2,099,444.81	\$2,181,022.61 \$	2,265,863.51	\$2,354,098.05
Diesel Generators Expected Capacity (high	nt) Mivvn/yea	ir/SF	2167	0			Present Value	s -	\$ -	\$ (9,832,727.27)	\$ -	\$ -	\$ 1,019,661.82	\$ 1,493,376.80	\$ 1,410,565.15 \$	5 1,332,393.65 \$	809,985.09	\$ 764,786.25	\$ 722,145.33	\$ 681,914.40	\$ 643,954.36 \$	608,134.38	\$ 574,331.42 \$	542,429.71	\$ 512,320.32
otal Diesel Generators Capacity	MWh/yea	r/SF	22978.86	8			Cumulative Present Value	\$ -	s -	\$ (9,832,727.27)	\$ (9,832,727.2	7) \$(9,832,727.27)	\$ (8,813,065.45)	\$(7,319,688.65)	\$(5,909,123.50) \$	\$ (4,576,729.85)	(3,766,744.76)	\$ (3,001,958.51)	\$ (2,279,813.18)	\$(1,597,898.77)	\$ (953,944.42) \$	(345,810.04)	\$ 228,521.38 \$	770,951.09	\$1,283,271.42
							Net Present Value	\$ 1,283,271.4	42																
Diesel Trucks Still Running (post-2028)			14	4				_	20	24	2025	202	6	2027	2028		2029	2030)	2031		2032	203	3	2034
Generator Capacity	GWh/yea	r/unit	17.5	2						0	1		2	3	4 Diesel Tri	icks	5	e	5	/		8		9	10
Generator Utilisation Aim			259	%				\$	2,024.0	00\$2	2,025.00 \$	2,026.00	\$	2,027.00 \$	2,028.00	\$ 2,0	029.00 \$	2,030.00	\$	2,031.00 \$	2,03	2.00 \$	2,033.00)\$	2,034.00
Number of Units Required		5	24631689	5 (Rounded	up to 6)		Maintenance Cost	\$	10,000,000.0	00 \$ 10,340	,000.00 \$	10,691,560.00	\$ 11,05	5,073.04 \$	11,430,945.52	\$ 11,819,5	597.67 \$	12,221,463.99	\$ 12,	636,993.77 \$	13,066,65	1.56 \$	13,510,917.71	1\$1	3,970,288.91
rue Itilisation		-	21 869	Va			Diesel Cost	\$	76,500,000.0	00 \$ 79,101	1,000.00 \$	81,790,434.00	\$ 84,57	1,308.76 \$	87,446,733.25	\$ 90,419,9	922.18 \$	93,494,199.54	\$ 96,	673,002.32 \$	99,959,88	4.40 \$	103,358,520.47	7 \$ 10	6,872,710.17
			21.007				Decommission Cost	\$		\$	- \$		\$	- \$		\$ 7,091,3	758.60		\$	- \$		- \$		\$	
			050		~		Truck Replacement	\$	-	\$	- \$	-	\$	- \$	-	\$	- \$	183,321,959.88	\$	- \$		- \$	-	\$	-
Diesel Generators Emissions	gCO2e/k	/vn	350	0 (Australia	an Governi	ment, 2022)	Delivery	\$	-	\$	- \$	-	\$	- \$	-	\$	- \$	6,110,732.00	\$	- \$		- \$	-	\$	-
olar Farm Emissions	gCO2e/k\	Nh	4	1 (Beyer et	al., 2023)		Total	¢	86 502 024 0	10 \$ 89 <i>44</i> 3	8 025 00 \$	92 484 020 00	\$ 95.62	8.408.80 \$	98 879 706 78	\$ 109 333 5	307.46 \$	289 039 653 41	\$ 109	312 027 09 \$	113 028 56	796 \$	116 871 471 18	s s 12	0 845 033 08
Renewable PPA Emissions	gCO2e/k\	Nh	35	3 (Clemons	s et al., 202	<u>(1)</u>	Cumulative	\$	86,502,024.0	00 \$ 175,945	5,049.00 \$	268,429,069.00	\$ 364,05	7,477.80 \$	462,937,184.57	\$ 572,270,4	492.03 \$	861,310,145.44	\$ 970,	622,172.53 \$	1,083,650,74	0.49 \$ 1	,200,522,211.67	7 \$ 1,32	1,367,244.75
							OPEX	\$	86,500,000.0	00 \$ 89,441	,000.00 \$	92,481,994.00	\$ 95,62	6,381.80 \$	98,877,678.78	\$ 102,239,	519.86 \$	105,715,663.53	\$ 109,	309,996.09 \$	113,026,53	5.96 \$	116,869,438.18	3 \$ 12	0,842,999.08
Diesel OPEX (6 engines)	\$/year		80000	0 (Modular	Mining, 2	011)																			
faintenance OPEX (1 engine)	\$/vear		20000	0	-		<u>Total</u>	<u>\$ 2,</u>	315,345,217.8	<u>81</u>															
Diversiting Cost	\$/vear		200000	0											Electric Tr	ucks									
)iosal Congrator Electricity Production	kWb/voa	-	2200000	8											Electriciti	doks									
hiss ner W/h	¢ (LAAIle	· •	22370000				Maintenance Cost	\$	-	\$	- \$	-	\$	- \$	-	\$ 47,278,3	390.68 \$	48,885,855.97	\$ 50,	547,975.07 \$	52,266,60	6.22 \$	54,043,670.83	3 \$ 5	5,881,155.64
nce per kwn	\$/KVVI1	ې •	0.0070				Electricity Cost	\$	-	\$	- \$	-	\$	- \$	-	\$ 31,466,	132.92 \$	32,535,981.44	\$ 33,	642,204.81 \$	34,786,03	9.77 \$	35,968,765.12	2\$3	7,191,703.14
Price per GWh	\$/GWh	Ş	87,036.49)			Truck Cost	s	240.000.000.0	00 \$	- \$		\$	- \$		\$	- \$		ŝ	- \$		- \$		\$	
Er	nergy Product	ion (GWh/y	ear)				Delivery	\$	5,000,000.0	00 \$	- \$	-	\$	- \$	-	\$	- \$		\$	- \$		- \$		\$	
'ear	2024 202	25 2024-2026	5 2027	2028	2029 2	030 onwards	Charging Grid Cost	\$		\$	- \$	-	\$	- \$	1,500,000.00	\$	- \$		\$	- \$		- \$		\$	
lumber of Solar Units	0	0 0	0	1	1	2	Solar Farm Cost	¢		¢		10 816 000 00	. ¢						¢					¢	
otal Electricity Requirement	108 10	8 108	108	288	288	288	Solar Farm Maintenance	\$		\$	- \$	182,497.00)\$ 18	8,701.90 \$	195,117.76	\$ 201,3	751.77 \$	208,611.33	\$	215,704.11 \$	223,03	8.05 \$	230,621.35	5\$	238,462.47
Jiesel	0	0 0	0	22 97887	22 97887	45 957736																			
alar	0	0 0		22.37007	22.37007	40.307700	Trolly Assist	\$		\$	- \$	-	\$ 4,80	0,000.00 \$	-	\$	- \$	-	\$	- \$	057.07	- \$	-	\$	-
	100 11	0 0	400	20.30113	20.30113	40.722204	Savings from Assist Diesel Cost (GENS)	ş		\$ \$	- \$		\$	\$	575,000.00	-\$ 594,5 \$ 2,712	550.00 -\$ 597.67 \$	514,754.70 2 804 825 99	-\$ \$ 2	635,666.70 -\$	657,27 2 998 70	9.37-\$ 653 \$	679,626.87 3 100 755 61	/-\$ \$	702,734.18
PA/Electricity Market	108 10	8 108	108	244.66	244.66	201.32	Diesel Gen Conversion	\$		\$	- \$	-	\$	- \$	-	\$ 425,5	505.52 \$	100,000.00	\$ 2,	454,931.78 \$	470,39	9.46 \$	486,393.04	1\$	502,930.40
Car	bon Emission	is (Mt CO2e	/year)				Diesel Gen Maintance	\$	-	\$	- \$	-	\$	- \$	-	\$ 709,	175.86 \$	733,287.84	\$	758,219.63 \$	783,99	9.09 \$	810,655.06	5 \$	838,217.33
'ear	2024 202	2026	2027	2028	2029	2030			10 000 000 0			40.004.500.00	. .	5 070 04 *	44 400 045 50	A 0.000	407.05 \$	0 400 000 00		700 470 40 4	4 000 00	1.00	4 004 500 40		4 055 040 45
lumber of Solar Units	0	0 0	0	1	1	2	Maintenance Cost (truck) Disel Cost (Trucks)	\$ \$	76 500 000 0	00 \$ 10,340 00 \$ 79.101	0,000.00 \$	10,691,560.00	\$ 11,05 \$ 84.57	5,073.04 \$ 1.308.76 \$	11,430,945.52	\$ 3,309,4 \$ 12,658	487.35 \$ 789.11 \$	3,422,009.92	\$ 1, \$ 13	769,179.13 \$ 534,220.33 \$	1,829,33	1.22 \$ 3.82 \$	1,891,528.48	35 75 1	1,955,840.45 4 962 179 42
otal Diesel Energy Requirement	360 36	60 360	360	100.8	100.8	100.8	DecomissionTrucks	\$		\$	- \$	-	\$	- \$	-	\$ 7,091,3	758.60 \$		\$	- \$	10,004,00	- \$	-	\$	-
otal Electric Energy Requirement	108 10	8 108	108	288	288	288																			
olar	0	0 0	0	0.000835	0.000835	0.001669613	Total Total Cumulative	\$	331,500,000.0	00 \$ 89,441	1,000.00 \$	103,480,491.00	\$ 100,61	5,083.69 \$	99,997,796.54	\$ 105,259,0	039.47 \$	101,164,995.71	\$ 103,	186,958.22 \$	106,695,31	4.79 \$	110,322,955.50)\$ 11	4,073,935.98
PA/Electricity Market 0.02	8124 0.03914	0 0 0 2 8 1 2 4	0.038134	0.086365	0.086365	0.07106506	OPEX	\$	86,502.024.0	0 \$ 420,941 00 \$ 89.443	3,025.00 \$	92,666.517.00	\$ 100.61	7,110.69 \$	99,074.824.54	\$ 98,763.8	859.87 \$	101,781.790.41	\$ 1,034,	824,655.91 \$	107.354.62	6.16 \$	111,004.615.36	5 \$ 1,36 5 \$ 11	4,778,704.16
Viscal	1.06	-+ 0.000124	1.00	0.000000	0.000000	0.512050070						, , , , ,	,			,,			,		, .,				
neset	1.26 1.2	.0 1.26	1.26	0.433226	0.433226	0.313652076	Total	<u>\$ 2</u> .	027.668.927.5	5Z															

GREEN TREE