Deloitte.

The Deloitte Climate & Engineering Case Competition (DCECC)

2024 NSW Winner Chula Consulting

Alisa, Branda, Saniya, and Victoria.

Electrifying the future

Green Gully Resources

Alisa Achdiat

Branda Huang

Saniya Mukhra

Victoria Diep

Executive Summary

Our strategy will allow Green Gully Resources to implement sustainable initiatives that will reduce emissions

The company overview for Green Gully Resources reveals numerous practices that currently CHULA fall short of sustainability standards

An analysis of key competitors...

...Allows us to look into industry best practices...

1. Tracking and reporting progress Improving visibility through data analytics platforms

2. Partner with technology providers Looking towards more sustainable energy options

3. Deployment of electric fleet Moving towards more sustainable transportation methods

4. Financing options Look towards securing grants and green bonds ...Leading to clear opportunities

Data Analytics

Deployable energy

Funding methods

Green Gully Resources (GGR) heavily relies on non-renewable energy, signalling a clear opportunity for sustainable energy transition

How can GGR implement sustainability initiatives in the years leading up to 2028 to minimise its carbon footprint and prepare for the introduction of electric haul trucks?

Digital Twin

Enhancing oversight of operations and electric fleet transition through digital twin technology

Power Purchase Agreements

Building a reliable and efficient source of clean energy

3

Sustainability Linked Loans

Funding sustainability initiatives through green loans

Digital Twin

Enhancing oversight of operations and electric fleet transition through digital twin technology

Power Purchase Agreements

Sustainability Linked Loans

Funding sustainability initiatives through green loans

Virtual representation of physical assets, processes, or systems, enabling real-time monitoring, analysis, and optimization

CHULA Consulting | Strategy

	•
××.	

Planning	
Unsustainable Operations	

Construction Fuel-Driven Processes

Extraction Fuel-Driven Processes

Key Features

Data Acquisition: geological surveys, exploration reports, and historical mining data to understand the terrain, mineral composition, and environmental factors

Data Integration: data from exploration activities, geospatial databases, and market trends provide a holistic view for strategic planning and decision-making

Analytics and Simulation: analytics tools analyse geological data to identify optimal locations for extraction, and simulate various mining scenarios to determine feasibility and optimize resource allocation

	30	泉.)	
\sim	`w'		
$\sim\sim$	2 .		

Planning	
Unsustainable	Operations

Construction Fuel-Driven Processes

Extraction Fuel-Driven Processes

Key Features

Data Acquisition: collect data from engineering designs, equipment specifications, and construction plans to understand project requirements and constraints

Data Integration: integrated data from mine planning software, asset management systems, and sensor networks provide real-time visibility into extraction processes and facilitate datadriven decision-making

Analytics and Simulation: analytics algorithms analyse operational data to optimize extraction processes, predict equipment failures, and optimize production schedules; simulation models simulate different mining scenarios

Supply Chain Process

	- 6-	·	4.1	
	.0.	л.	21	
		10		
		2.		

Planning Unsustainable Operations

Construction Fuel-Driven Processes

Extraction Fuel-Driven Processes

Key Features

Data Acquisition: collect data from fleet management systems, vehicle telemetry, and logistics platforms to monitor transport routes, vehicle performance, and cargo status

Data Integration: transportation management systems, inventory databases, and geospatial mapping tools ensure efficient coordination between transportation activities and operational requirements

Analytics and Simulation: optimize route planning, minimize fuel consumption, and improve vehicle utilization. Simulation models simulate traffic patterns, vehicle movements, and loading/unloading processes

Our digital twin will enhance the oversight of GGR's operations leading to a reduction in emissions

How digital twin makes GGR's operations more sustainable

RESOURCE OPTIMIZATION

By identifying inefficiencies and implementing corrective measures, digital twins help minimize resource waste and reduce the environmental footprint of mining operations ENERGY

Through predictive analytics and simulation, digital twins help operators optimize energy usage, reduce reliance on fossil fuels, and integrate renewable energy sources into the operation

EMISSIONS REDUCTION

By analysing emissions data and identifying emission hotspots, digital twins support the implementation of mitigation measures to reduce emissions and improve air quality

Our digital twin will enhance the oversight of GGR's operations leading to a reduction in emissions

How will digital twin help GGR with the rollout of electric fleets?

implementing corrective measures, digital twins help minimize resource waste and reduce the environmental footprint of mining operations operators optimize energy usage, reduce reliance on fossil fuels, and integrate renewable energy sources into the operation identifying emission hotspots, digital twins support the implementation of mitigation measures to reduce emissions and improve air quality The transition to electric fleets will be optimised by both a **technological and operational** approach in our implementation plan utilising our digital twin technology

The transition to electric fleets will be optimised by both a **technological and operational** approach in our implementation plan utilising our digital twin technology

Digital Twin can assist with the planning of electric fleets.

GGR can input various factors such as:
✓ Fleet metrics
✓ Battery capacity considerations
✓ Geographical factors

Predictive modelling can assist GGR with:
 ✓ Optimising transport routes
 ✓ Check out optimal locations for charging station
 ✓ Forecast demand and availability of electric trucks

The transition to electric fleets will be optimised by both a **technological and operational** approach in our implementation plan utilising our digital twin technology

Effective training is very critical in the mining industry and digital twin can help that.

 Provide a safe and efficient training environment, allowing experienced personnel to pass on their knowledge while minimising risks of costly accidents or injuries. ✓ Can simulate emergency scenarios such as equipment failure, cave-ins, or gas leaks
 ✓ Enables workers to understand the practical implications of their actions
 ✓ Helps them respond more effectively and safely if such an event occurs.

Digital Twin

Enhancing oversight of operations and electric fleet transition through digital twin technology

2

Power Purchase Agreements

Building a reliable and efficient source of clean energy

3

Sustainability Linked Loans

Funding sustainability initiatives through green loans

GGR needs Power Purchase Agreements (PPA) to source clean and reliable energy

GGR should form a long-term contract with nearby renewable suppliers to achieve their vision of fully CHULA electrified mines

Merredin Solar fa	rm Gree	en Gully Resources	How it is implemented into the operations and changing trucks			
solar technology			Planning	Construct	tion Transportation	
	Vhy Merredin Solar Farm	I?	 ✓ Solar powered technology for scoping mine site 	 ✓ Operative sused for m extraction a construction are powere by Solar 	nine truck charging and stations on powered by	
Market Leader In WA	Large Annual Production	Precedence of Large Clients	<u> </u>	Benefit	i [i TS	
 ✓ Rated the best performing Solar farm in Western Australia 	 ✓ Has the capacity to produce 274GW of power annually 	 ✓ Past line of clients in Nickel refineries and other similar industries 	Efficient impleme With immediate ac renewables 21.6% boost in eff	ccess to	Sustainably Sourced Sourced from Renewable Solar Farms 95% decreased off emissions	

GGR should form a long-term contract with nearby renewable suppliers to achieve their vision of fully CHULA electrified mines

Merredin Solar farm	Green Gully Resources	How it is impl	emented into the changing trucks	
solar technology		Planning	Construction	Transportation

How can we help GGR develop these initiatives and bring their sustainable vision to life?

In WA	Production	Large Clients	Ben	efits
 ✓ Rated the best performing Solar farm in Western Australia 	 ✓ Has the capacity to produce 274GW of power annually 	 ✓ Past line of clients in Nickel refineries and other similar industries 	Efficient implementation With immediate access to renewables 21.6% boost in efficiency	Sustainably Sourced Sourced from Renewable Solar Farms 95% decreased off emissions

CHULA Consulting | Strategy

Digital Twin

Enhancing oversight of operations and electric fleet transition through digital twin technology

Power Purchase Agreements Building a reliable and efficient source of clean energy

3

Sustainability Linked Loans

Funding sustainability initiatives through green loans

GGR will fund a greener future with **Sustainably Linked Loans (SLL)**

SLLs are loan facilities where the borrower is incentivised through the loan pricing to achieve pre-agreed sustainability performance targets (SPTs). Where SPTs are achieved, the borrower is rewarded with a decrease in the applicable interest rate.

GGR will need to implement our strategy in a timely yet feasible approach

GGR will need to implement our strategy in a timely yet feasible approach

GGR can revolutionise their **sustainability impacts** through our strategy

Electrifying the Future

The impact of the incoming new fleet of haul trucks is not enough

Through our digital twin, PPA and SLL loans we will reduce emissions to meet our sustainability targets

By the end of 2034 Green Gully Resource will reduce carbon emissions by 68%

Impacts

15%

Reduction in Emissions due to new trucks

35%

Reduction in Emissions due to our strategy

50%

Reduction in Emissions due to our strategy

CHULA Consulting | Impact

Title
Executive Summary
Company Process Overview
Competitive Landscape
Strategy Overview
Digital Twin Overview
Digital Twin: Planning
Digital Twin: Construction + Extraction
Digital Twin: Transportation
Benefits of Digital Twin
Electric Truck Implementation Roadmap
Digital Twin: Technological Readiness
Digital Twin: Operational Readiness
Power Purchase Agreements
Contract with Solar Farm

1	Sustainability Linked Loans
2	Risks & Mitigation
3	Implementation Timeline
4	Key Impacts
5	Impact Overview
9	
11	
12	
13	
14	
16	

17

18

21

24	dix
25	ben
26	Α¢
32	

33

h

Case Study: All-electrified Mine	35
Digital Twin Supplier	36
Case Study: Digital Twin in Gold Mine	37
PPA: Long-term Contract Partners	38
Energy Financials Overview	39
Energy Breakdown	40
Emissions Reduction	41
Cost Breakdown	42

CASE STUDY **SANDVIK** Reduction in annual greenhouse gas (GHG) NEWMONT emissions of 70% MacLean **GOLDCORP**... Canada's first all-electric operation Replaced all of its underground diesel and the world's first diesel-free hard Improved staff well-being fleet of trucks with Battery Electric rock mine: Vehicles, making it one of the first all-Newmont Goldcorp's Borden mine electric underground mines in Canada Reduced megawatt hours of 33,000 per year Battery-operated drilling and blasting because of the huge decrease in ventilation equipment, to electric bolters, personnel carriers and, ultimately, a 40-metric-tonne requirements by 50% battery-powered haul truck, eliminate all GHG emissions associated with the movement of ore and waste rock Improved safety performance Utilises IoT Sensors by Maestro

Digital Twin Supplier/Operator and Key Features

Case Study: Digital Twin in Gold Mining Operation

CASE STUDY ETRA **PANAUST** MAXTAGeomet successfully identified conditions leading to high levels of locked gold and poor recovery PanAust turned to PETRA and its MAXTAGeomet application, a In 2018, PanAust's Ban Houayxai goldgroundbreaking orebody learning silver operation in northern Laos faced Following the successful Ban Houayxai project, powered by AI for mine value-chain a challenging issue: infrequent MAXTA found applications across iron-ore, copperoptimisation episodes of very poor gold recovery, gold, and gold operations worldwide MAXTAGeomet utilises operational data to often falling below 50%. predict plant performance, making it an ideal choice for the Ban Houayxai project, Its capabilities expanded beyond geometallurgy, using geological data for input to digital encompassing product quality, comminution energy twin model consumption, and crusher, beneficiation, milling throughput maximisation The PETRA team integrated this data into the MAXTA software, creating a predictive This approach quantified mining risk, supplying model that could be applied to the mine's block model for historical reconciliation valuable data for cost improvement studies, analyses, and simulations for various scenarios. analysis and future predictions

PPA – Potential Long-term contract partners

- ✓ Diverse Renewable Energy Portfolio:
 - ✓ managing a substantial renewable energy portfolio, operating three power plants with a combined capacity of around 310 MW.
- ✓ Strategic Partnership and Expansion:
 - ✓ focusing on growth by entering into a strategic partnership, transferring a 50% stake of Enel Green Power Australia to INPEX
- ✓ Contribution to Sustainable Development:
 - ✓ Enel Green Power Australia is at the forefront of supporting Australia's sustainable development

- ✓ Innovative Renewable Energy Investment:
 - ✓ Sun Metals has demonstrated a commitment to renewable energy by investing \$200 million in constructing a 143MWAC solar farm.
- ✓ Large-scale Solar Infrastructure:
 - ✓ housing around 1.26 million solar PV modules and 52 large-scale outdoor inverters.
- ✓ Leadership in Energy Market Transformation:
 - Sun Metals has been a driving force in the adaptation of the Queensland and Australian energy markets to new electricity network requirements.

Energy Reduction

Energy Required		2024	2025	2026	2027	2028	2029	2030	2031	2032
BASE LINE:										
Western Australia Mineral Mining:										
Iron Ore	Mt	761								
Lithium	Mt	3								
Alumina	Mt	13								
Others	Mt	10								
Total	Mt	787								
	IVIC	/0/								
No Mines in Western Australia		125								
Average Mineral Amount per mine		6								
		C C								
Green Gully Resources:										
Mines in total		10								
Mt of minerals produced	Mt	63								
Energy intensity Per Mt	kWh/tonne	11								
<i>,</i>	,									
Energy due to minerals	GWh	674								
No of fleet		0	10	10	20	20	30	30	40	40
Available trucks		0	9	9	18	18	26	26	35	35
Utilised trucks		0	6	6	11	11	17	17	23	23
distance travelled per fleet per day	km	250								
distance travelled per fleet per year	km	65000								
distance travelled by fleet per year	km	0	371800	371800	743600	743600	1115400	1115400	1487200	1487200
Energy per 100km	kWh	80								
Energy used by fleet	GWh	0	30	30	59	59	89	89	119	119
Energy due to processing	GWh	337								
Energy due to support infrastructure	GWh	168								
Total Energy Used	GWh	1179	1209	1209	1239	1239	1269	1269	1298	1298
WITH STRATEGY										
	014	505	535	535			505	505	69.6	6 1
Servicable Addressible Energy Usuage	GWh	505	535	535	565	565	595	595	624	624
Digital Twin:	014	2			•	•	40	10	10	40
Optimization of Transport	GWh	0	4	4	9	9	13	13	18	18
Optimization of Machinery	GWh	67								
Optimization of Processing	GWh	51								
Optimization of Support Infrastructure	GWh	84								
Total Reduction in Energy from Digital Twin	CW/b		207	207	211	211	216	216	220	220
Total Reduction in Energy from Digital Twin	GWh		207	207	211	211	216	216	220	220
Total Energy after Strategy	GWh	1179	1002	1002	1028	1028	1053	1053	1078	1078
Total Energy after Strategy	Gwn	11/9	1002	1002	1020	1028	1053	1053	1078	10/8

Emission Reduction

Emissions Reduced		2024	2025	2026	2027	2028	2029	2030	2031	2032
Base Line	MtCo_2	1.3								
Direct Emisssions	%	40								
Diesel and Other Fuel	tCo_2	0.2600	0.2080	0.1664	0.0998	0.0599	0.0240	0.0096	0.0019	0.0004
Process Emissions		0.208								
Energy Emissions Percentage	%	20								
Emissions per kWh	kg	0.85								
Energy Emissions	tCo_2	0.26	0.51	0.51	0.53	0.53	0.54	0.54	0.55	0.55
Other Emissions Percentage	%	30								
Other Emissions	tCo_2	0.39								
Total Emissions with out hual truck change	MtCo_2	1.12	1.37	1.37	1.38	1.38	1.40	1.40	1.41	1.41
Total Emissions	MtCo_2	1.12	1.32	1.28	1.22	1.18	1.16	1.15	1.15	1.15
With Strategy										
Energy Emission Reduction										
Power Purchase Agreement										
Emissions Reduction for PPA's percentage	%	75								
Reducation Emissions for PPA's	MtCo_2		0.385	0.386	0.395	0.395	0.405	0.405	0.414	0.414
Emissions Reduction for Renewable per MW	kg	0.95								
Reduction from energy efficiency	MtCo_2		0.3662	0.3663	0.3753	0.3753	0.3843	0.3843	0.3933	0.3933
Total Emissions after strategy		1.12	0.95	0.91	0.85	0.81	0.78	0.76	0.76	0.76

Cost Breakdown

CH	ULA
CON	SULTING

Cost Anaylsis		2024	2025	2026	2027	2028	2029	2030	2031	2032
Fixed Costs:										
Charging Infrastructure	\$	1500000								
Delivery Costs	\$	5000000								
Disposal of Old Assets	\$	200000								
Trucks Cost x10	\$	6000000								
Total Fixed Costs	\$	12700000								
Disital Turis Caster										
Digital Twin Costs:	¢	100000								
Data Collection and Integration	\$	100000	2000000							
Model Development	\$	2000000	2000000							
Software Team	\$	240000	240000	360000	360000	420000	420000	420000	420000	420000
Deployment and User Training	\$	240000	240000							
Total	\$	2580000	2480000	360000	360000	420000	420000	420000	420000	420000
PPA Cost per MW	\$	60								
PPA Cost	\$	70762	60148	60148	61665	61665	63182	63182	64699	64699
PPA Cost without energy efficency	\$	70762	72546	72546	74331	74331	76116	76116	77900	77900
Other Vairable Costs										
Maintenance Cost	\$	1000000	1000000	1000000	1000000	1000000	1000000	1000000	1000000	1000000
Misc. Costs	\$	162801	348000	136000	136000	142000	142000	142000	142000	142000
Total other Vairable Costs	\$	1162801	1348000	1136000	1136000	1142000	1142000	1142000	1142000	1142000
Total Costs	\$	16442802	3828002	1496002	1496002	1562002	1562002	1562002	1562002	1562002
Cost of just strategy	\$	3742802	3828002	1496002	1496002	1562002	1562002	1562002	1562002	1562002
Cost Reduction										
Sustainability Linked Loan	\$	-5000000								
Annual Interest Rate	%	1.99								
Annual Payment	70	556341	556341	556341	556341	556341	556341	556341	556341	556341
Total Cost	\$	\$11,999,143.16	4384343	2052343	2052343	2118343	2118343	2118343	2118343	\$2,118,343.15
Revenue		2024	2025	2026	2027	2028	2029	2030	2031	2032
Natural Revenue Growth Rate	%	2								
Baseline Revenue	Million	300	306	312	318	325	331	338	345	351
Cost Saving:										
Original Cost of Electricity per MW (0.12 kWh)	\$	120								
Original Cost of Electricity per MW (0.12 kWh) Cost of electrcity without energy efficiency	\$	120 141523	145093	145093	148662	148662	152231	152231	155800	155800