
That’s just rad! Radiation-hardened 
chips take space tech and nuclear 
energy to new heights
The next generation of rad-hard chips is helping bring devices 
used in high-radiation environments into the 21st century at last.
Duncan Stewart, David Jarvis, Christie Simons, and Gillian Crossan

THEY’RE SMALL, THEY’RE smart, and they can 
tolerate radiation levels that would bring 
most other chips to their knees. Deloitte 

Global predicts that the radiation-hardened (rad-
hard) electronics market will top US$1.5 billion in 
sales globally in 2023.1 That’s just a fraction of the 
expected US$660 billion-plus total chip market for 
the year,2  but these chips are mighty because of 
what they enable, not how much money 
they represent. 

Advanced rad-hard chips could 
transform whole industries

Ionizing radiation, about a trillion times more 
energetic than the UV that causes skin cancer, is 
bad for chips. Ionizing radiation can damage chips 
cumulatively over time (measured by total ionizing 
dose or TID), degrading performance and 
eventually making the device useless. Another 
radiation effect is caused by high-energy particles. 
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HOW RAD-HARD CHIPS ARE MADE
There are two approaches to make chips 
rad-hard: the physical and the logical. In 
the first (the focus of this prediction) chips 
are physically made differently: They are 
made of different materials such as silicon 
carbide (SiC) or gallium nitride (GaN) (see 
companion prediction on these materials), or 
the processing layer of silicon can be on an 
insulating layer or substrate. Other options 
include using bipolar integrated circuits 
instead of traditional CMOS, leveraging 
DRAM instead of SRAM, shielding   with 
depleted boron, or radiation hardening 
by design. Moreover, in case of space 
applications, normal packages won’t be 
able to withstand the G-force and other 
environmental conditions. Therefore, 
rad-hard chips require special packages 
(e.g., ceramic) that can withstand higher 
G-forces and wider temperature ranges 
better than other common materials.
Design and layout techniques can also 
be used to harden a technology. Logical 
hardening can be accomplished via various 
kinds of redundancy, but also special 
hardened latches, layout techniques, and 
timing circuits.

These cause single-event effects and flip the value 
of a transistor from one to zero or vice versa on a 
processor or in memory—a phenomenon called a 

“bitflip.” After enough of those flips, calculations are 
ruined, or a permanent and fatal error called a 

“latch-up” can occur.3

Even on Earth, bitflips can be caused by solar flares 
of high-energy particles entering the Earth’s 
atmosphere. In space, single-event effects are a 
concern, given the small transistor sizes. 
Meanwhile, TID is a concern in longer-term 
missions. Several terrestrial applications (such as 
nuclear fusion and cleanup at Fukushima4) require 
hardness towards gamma radiation. In another 
example, making the medical devices that are 
exposed to X-rays radiation-tolerant will help 
extend their longevity.5

Although rad-hard chips can be useful for all sorts 
of applications, two of the biggest are in space and 
nuclear energy.

Space. Space is a harsh environment for chips. 
Vibration, severe thermal variations, electrostatic 
discharge, and G-forces on launch all require 
space-bound chips to be tougher than those in the 
average smartphone. Of these dangers, radiation is 
arguably the biggest of them all. Earth’s 
atmosphere is a highly effective radiation shield. 
But satellites in orbit, especially higher orbits, are 
above much of the atmosphere and thus 
continuously exposed to high levels of damaging 
radiation, and intermittently exposed to even 
higher radiation levels when the sun is at its most 
active. Except for inside the shielded portion of the 
International Space Station, most chips in space 
today are “legacy chips”, radiation tolerant, but 
made with older technologies that render them 
incapable of the kind of processing we take for 
granted on even a mid-range smartphone: AI 
image processing, graphics manipulation, and so 
on. For this reason, many space-based devices are 

“dumb terminals”: They capture images, provide 
connectivity, and maneuver themselves, but 

require Earth-based processing to assist in all 
those things. They need to send everything down to 
Earth, wait for Earth to figure out what to do, then 
wait for Earth to transmit the right commands 
back. This can be slow.

New generations of rad-hard electronics for space 
environments will likely change that, with 
potentially enormous benefits. For example, 
NASA’s  Space Cube is a family of FPGA  onboard 
systems that help boost onboard computing 
capability, autonomy, and artificial intelligence/
machine learning (AI/ML) in space.6 With such 
advancements, spacecraft can become smarter, last 
longer, and be more reliable, all at the same time. 
Imaging satellites could observe a natural disaster 
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such as an undersea earthquake and send tsunami 
alerts hours earlier, potentially saving millions of 
lives. Illegal methane emissions (methane 
contributes to short-term global warming 85 times 
more than CO2)7 could be detected in real time, 
and offenders more quickly caught and fined. 
Satellites at risk of collision could move—on their 
own initiative—much faster than they can today, 
mitigating the risk of runaway collisions and debris 
in orbit.8   

Nuclear energy. Although nuclear fission energy 
production has decreased in the last 20 years due 
to concerns about safety and waste, the clock is 
ticking on reaching the Paris Agreement’s 2030 
climate goals, and fission is attracting renewed 
attention as a result.9 Multiple new, modern 
nuclear power plants, smaller and safer than those 
from the past, have been proposed for the next 

decade. These new kinds of nuclear reactors are 
already being enabled by increasingly advanced 
rad-hard chips.

However, the Holy Grail of nuclear energy is not 
fission, but likely fusion. Cleaner, greener, and 
(theoretically) even more powerful, successful 
fusion reactors could help solve the planet’s 
greenhouse gas emissions in a few decades. But 
making fusion work requires magnetic fields, high 
pressures, and constantly fluctuating temperatures, 
all of which need to be sensed, interpreted, and 
controlled with chips that are both extremely 
powerful and extremely radiation-resistant.10 With 
recent progress making fusion power possibly 
more feasible than previously thought,11 the need to 
run these reactors could be a key driver of demand 
for rad-hard chips by the end of the decade.
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THE BOTTOM LINE
As the recent chip shortage has highlighted, it isn’t a great idea to have the manufacturing of any 
given kind of chip in only one or two plants. Countries and regions will likely want to make sure that 
they have local suppliers and makers of rad-hard chips. As an example, the US federal government is 
spending US$170 million to advance rad-hard chip manufacturing in Minnesota.12 

Rad-hard chips are important for military and national security too. Secret military surveillance 
satellites and nuclear weapons would both be key examples. Chip self-sufficiency for all military 
applications is low: As of 2021, only 2% of the chips used by US military systems were made in 
trusted US-based foundries.13 

Interestingly, shorter-duration missions at lower altitudes could even use commercial, off-the-shelf 
(COTS) chips that are radiation hardened at the system level instead of dedicated, special rad-hard 
chips. This could represent a marked shift in the rad-hard field, lowering the cost of chips for certain 
space applications.14

As mentioned above, another area of using rad-hard chips in space is integrating AI/ML capabilities 
and bringing edge computing to space applications. This could alleviate the need to send all the 
pictures and images they capture back to the Earth for further analysis and insight—and over a 
limited network bandwidth. By integrating AI/ML capabilities alongside rad-hard chips onboard, the 
space equipment can potentially handle all the advanced analytics by itself—image detection, image 
classification, automated decision, and timely action.15 

Besides bolstering onboard analytics, companies are experimenting with launching analytics-
heavy payloads into orbit, dedicated to performing advanced data processing and analytics. Such 
dedicated, compute-intensive satellites can serve as hubs in delivering edge computing services to 
other orbiting satellites.16

Companies and governments will likely want to encourage continued research and development of 
rad-hard technologies. Recent initiatives, such as NASA’s High-Performance Spaceflight Computing 
(HPSC) project, focus on enabling next-generation space missions using advanced chips and modern 
architecture—all with the intent of supporting the ambitious plan of taking humans back to the 
Moon and forward to Mars. NASA and Microchip have recently collaborated on a US$50 million 
project to develop a spaceborne processor that will outperform current industry processors by  
100 times.17  

Paths to continue exploring include materials such as compound semiconductors (GaN and SiC), use 
of traditional silicon in new ways (FinFET and SOI), and creating rad-hard versions of popular and 
useful commercial technologies such as ARM or RISC-V.18 Moreover, the advanced tech nodes and 
smaller linewidths at sub-10 nm—which several chip majors are piloting today—can help reduce 
the overall weight of the launch unit. This can be critical to containing the overall project cost, while 
improving the mission’s success probability.

The biggest challenge will likely be for the satellite industry. For decades, space-based sensors relied 
on Earth-based processing. Significantly increasing onboard processing and memory is a whole new 
opportunity: It will be exciting to see what the industry can do with these new capabilities over the 
next few years.
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