

Why Quantum Computers
Aren’t Cracking RSA Yet:
A Practical Guide to
Quantum Error Correction

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

2

Authors:

Itan Barmes PhD, Global Quantum Cyber Readiness Capability Lead at Deloitte Consultative Services B.V.

Colin Soutar PhD, Global Quantum Cyber Readiness Leader at Deloitte & Touche LLP

Alvaro Veliz Osorio PhD, Head of Tech Partnerships, Riverlane Ltd

Introduction

The rapid advancement of quantum computing is bringing

businesses closer to real-world applications of this

transformative technology. One significant application is

solving the integer factorization problem using Shor’s

algorithm. Since integer factorization underpins the RSA

(Rivest-Shamir-Adelman) and other cryptosystems, the rise of

quantum computing could expose vulnerabilities in data

security across sectors.

As quantum computing evolves, estimating when it might

compromise current cryptographic protocols becomes crucial.

These insights can help guide decision-makers on the urgency

of adopting quantum-safe solutions.

To date, small-scale demonstrations of Shor’s algorithm—such

as factoring 21 [1,2]—have been successful but remain

unscalable due to the absence of quantum error correction.

Quantum systems are inherently unstable, and reliable error

correction is essential for unlocking their full computational

advantage.

A common misconception is that progress depends only on

increasing qubit (the quantum version of a bit) counts. In

practice, scalability hinges on reliability, error suppression, and

coordination. Without this fault tolerance, more qubits just

mean more noise. That’s why achieving quantum error

correction is fundamental—and the focus of this article.

Amid rapid technological progress, a communication gap has

emerged: research is too technical for non-specialists, while

media can sometimes exaggerate progress, which can result in

misconceptions that overlook critical nuances. This article aims

to bridge that gap with a clear framework for understanding

quantum error correction, tailored specifically for cybersecurity

professionals who are monitoring quantum developments. We

construct and present building blocks for error-corrected

quantum computers that will clarify the steps needed to realize

a cryptographically relevant quantum computer.

What is error correction?

Computation relies on two core processes: storing and

processing information—both of which are susceptible to errors.

These errors can lead to incorrect results and need to be

managed effectively in classical and quantum systems.

Classical computing uses error correction codes that add

redundancy to detect and fix errors. These methods are so

advanced that many users are unaware they’re operating

continuously.

Quantum error correction faces distinct challenges. Qubits are

highly sensitive to noise, and quantum information cannot be

copied (due to the no-cloning theorem [3]). Additionally,

measuring a qubit might alter its state. These constraints make

quantum error correction far more complex and resource-

intensive than classical error correction.

https://www2.deloitte.com/us/en/insights/industry/financial-services/financial-services-industry-predictions/2023/quantum-computing-in-finance.html
https://www2.deloitte.com/us/en/insights/industry/financial-services/financial-services-industry-predictions/2023/quantum-computing-in-finance.html

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

3

The quantum error correction process

At the heart of quantum error correction lies the concept of encoding a single logical qubit into multiple physical qubits. A logical qubit

represents a single unit of quantum information that is distributed across many physical qubits to make it more resistant to errors. By

spreading the information this way, the system becomes less vulnerable to noise. This collective encoding is what allows quantum

computers to suppress noise and correct faults.

Various quantum error correction codes exist, with surface codes and color codes being among the most widely used [4]. Two key

parameters define such code:

• Overhead – the number of physical qubits required to encode one logical qubit.

• Distance – a measure of how many errors the code can detect and correct.

The ideal state would be high distance with low overhead, but design trade-offs often force a compromise. Choosing the applicable code

depends on the architecture and the dominant noise sources.

Figure 1: Surface code layouts for code distances 3 and 5. This figure compares two surface code implementations. Each layout encodes a single logical qubit using a grid of data (white) and

ancilla (black) qubits. Increasing the code distance—from 3 to 5—enhances error correction capability by allowing the code to detect and correct more errors, but requires significantly more

physical qubits (17 for distance 3 and 49 for distance 5).

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

4

For the chosen quantum error correction code, a separate group of auxiliary or ancilla qubits is used to perform continuous non-

destructive measurements to extract potential errors and eventually to correct for them. Fig.1 shows an example of a distance 3 and

distance 5 surface code, and depicts the data and ancilla qubits. The error correction process is depicted in Fig.2, and is composed of the

following steps:

Figure 2: Key steps in the quantum error correction process. This diagram illustrates the core components of quantum error correction: syndrome extraction, decoding, logical measurement, and

correction. These steps work together to detect and mitigate errors in logical qubits, enabling fault-tolerant quantum computation—provided the physical error rate remains below a threshold.

Syndrome extraction: This step entails performing a carefully defined set of entangling gates between the data qubits and the ancilla qubits,

preserving the information encoded in the qubits. The state of the ancilla qubits is then measured, and the results, known as syndromes,

provide insights into errors that may have affected the data qubit. Syndrome extraction occurs continuously throughout the operation of

the quantum computer.

Decoding: While syndromes provide hints about potential errors, decoding infers the operation needed for correction. This process is

computationally intensive. Decoding that to run continuously and at high speed is one of the challenges that needs to be overcome to

support large scale quantum algorithms.

Logical measurements: At various points in the algorithm, it becomes appropriate to measure the state of the logical qubit. This

measurement is carried out by measuring various combinations of data qubits.

Correction: When the decoding and logical measurement are done, relevant information to deduce what may likely have been the results of

the measurement if no error had occurred is available.

If these steps are executed correctly, the resulting logical qubit will have a lower error rate than its underlying physical qubits. Importantly,

this only holds if the physical system operates below a certain error threshold, which varies depending on the code, the noise model, and

decoding accuracy.

Operating below threshold is a critical requirement for achieving fault tolerance. As we’ll highlight in later sections, reaching and

demonstrating below-threshold performance is one of the core milestones in building a scalable quantum computer.

Logical operations

Quantum algorithms that display an exponential speedup

comparted to their classical counterparts require a universal

gate set. One of the most widely used gate sets is Clifford+T [5],

including:

• Clifford gates: Pauli (X, Y, Z), Hadamard (H), Controlled NOT

(CNOT), and S

• Non-Clifford gate: T

Applying operations inevitably introduces new errors. Therefore,

when logical gates are implemented, they need to be fault

tolerant, which means that such errors can still be handled by

the quantum error correction scheme.

As we delve deeper, we will see that Clifford gates are relatively

easy to implement in a fault tolerant manner, while T gates are

much harder to implement. As will be shown in the following

section, implementing T gates correctly/properly is one of the

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

5

most challenging elements in realizing a fault tolerant quantum

computer.

Building blocks for a fault-tolerant quantum

computer
As outlined in the previous sections, numerous elements need

to work in harmony to enable the execution of quantum

algorithms in a fault-tolerant manner. Many of these

components present experimental challenges and are often

difficult to communicate in an accessible way to non-specialists.

We propose a structured framework to assess progress in fault-

tolerant quantum computing. It has three levels, each with three

building blocks (see Fig. 3). Full algorithmic capability depends on

mastering each of them.

Figure 3: Three-level framework for fault-tolerant quantum computing. This framework

categorizes progress in fault-tolerant quantum computing into three levels: error

correction of quantum memory, fault-tolerant logical Clifford operations, and fault-

tolerant non-Clifford operations. Each level consists of three building blocks representing

key capabilities. While presented in order, progress across levels can occur in parallel,

depending on the quantum platform and experimental focus.

Level 1: Error correction of quantum memory

At this level, the focus is on quantum error correction within

quantum memory, without applying operations that alter

information encoded in the logical qubit.

Building block 1: Logical qubit encoding and syndrome

extraction

The first building block involves experimentally demonstrating the

various elements of a quantum error correction code. This

includes encoding data in a logical qubit, extracting syndromes,

and decoding.

Early demonstrations of these fundamental properties began over

20 years ago and since then, many types of codes (such as

repetition codes [6], surface codes [7], color codes [8]) have been

tested. Initially, the logical error rates in these demonstrations

were worse than the physical error rates. However, they primarily

showcased the feasibility of these methods and identified areas for

improvement.

Building block 2: Multiple syndrome extraction cycles

Due to the fragility of the qubits, syndrome extraction cycles need

to be executed continuously throughout the runtime of the

quantum algorithm. Such cycle can take anywhere from

microseconds (for superconducting qubits) to milliseconds (for

ions and neutral atom qubits), a significant number of syndrome

extraction cycles are required.

Demonstrating multiple cycles necessitates improvements in the

error rate of the physical qubits and addressing errors caused by

other processes, such as measuring the ancilla qubits and applying

physical gates. In recent years, several experiments have

effectively demonstrated tens of syndrome extraction cycles and

decoding [9,10,11,12].

Building block 3: Below-threshold operation and increasing code

size

As described in an earlier section, increasing the code distance

enhances the logical error rate only if the physical error rate

remains below a certain threshold. In 2024, Google [13] provided

a thorough demonstration of below-threshold operation. They

experimentally established the exponential relationship between

code distance and logical error rate. Specifically, they demonstrate

that each increase in code distance improves the quality of the

logical qubit by a factor of 2. Additionally, the team conducted up

to 1 million syndrome extraction cycles, with an operational time

of up to 1 second, marking a significant advancement from

previous demonstrations.

Level 2: Fault tolerant logical Clifford operations

Building on the foundation established in Level 1, this level

examines single and two-qubit Clifford operations, essential for

executing quantum algorithms.

Building block 1: Single qubit logical operation

Various methods are available for implementing single qubit gates

(Pauli gates, Hadamard, and S). These methods range from directly

applying the physical gate to all physical qubits, to more advanced

techniques like lattice surgery. Demonstrations of these building

blocks can vary from proof-of-concept applications to embedding

them in sequences of gates to illustrate a quantum algorithm.

While implementing Pauli gates is relatively straightforward, the H

and S gates may involve more complexity. A crucial aspect of these

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

6

demonstrations is controlling against adverse impact to the logical

error rate from the incurred errors. Logical single qubit gates have

been demonstrated in trapped ions [14,15] and neutral atoms [16]

for different color codes and the surface code.

Building block 2: Two qubit logical operation

In our chosen universal gate set, the CNOT gate is the only two-

qubit gate, playing a critical role in quantum algorithms through its

function in creating entanglement. One way to implement a CNOT

between two logical qubits is to perform pairwise physical CNOT

gates between their constituent physical qubits. However, this

requires connectivity between pairs of physical qubits that are far

from each other. In qubit architectures where qubits can be

moved (e.g., atoms and ions), the solution is to physically move the

qubits closer to perform the pairwise CNOT. However, for

architectures of fixed qubits (e.g., superconducting qubits), a CNOT

gate can only be realized for qubits in close proximity to each

other. Lattice surgery is a technique where the CNOT operation is

executed by stitching qubits to each other and operating only on

the interface (supporting the proximity limitation of fixed qubits).

Logical CNOT gates between color-code logical qubits have been

demonstrated on both trapped-ion systems [17,18] and neutral-

atom platforms [19]. Additionally, logical CNOTs between pairs of

distance-7 surface-code qubits have been realized using neutral

atoms [19]. Lattice surgery has also been used to entangle two

distance-2 logical qubits in a trapped-ion quantum computer [20].

On superconducting platforms, lattice-surgery-based logical

CNOTs have so far been implemented only for the repetition code

[21].

Building block 3: Fault tolerant Clifford circuits

With the required components established, executing basic

Clifford circuits can begin. This enables the application of the

operations discussed at this level while correcting for errors that

accumulate during the algorithm's runtime. Initial

demonstrations of entanglement circuits [22] and simple

quantum algorithms [23] have been made, though the number

of syndrome extraction cycles in these experiments has been

relatively low. To fully realize this building block, both the

execution of logical operations and the demonstration of

multiple syndrome extraction cycles have to occur concurrently.

While superconducting qubits have shown many syndrome

extraction cycles (excelling in level 1), neutral atoms and trapped

ions have demonstrated more versatile logical operations (level

2). It is yet to be seen which qubit modality will be the first one to

demonstrate both level 1 and 2 simultaneously.

Level 3: Fault tolerant logical non-Clifford operations

Every quantum algorithm offering exponential speedups involves

both Clifford and non-Clifford gates, such as the T gate. Most

quantum error correction schemes natively support the fault-

tolerant implementation of Clifford gates, while non-Clifford gates

(in this case, the T gate) typically require indirect methods. The

leading approach for implementing a T gate involves preparing a

special type of quantum state—known as a magic state—which is

then injected into the computation. This process is called magic

state injection and is equivalent to applying a T gate in a fault

tolerant manner.

Magic states are needed in large quantities, and their preparation

consumes a substantial fraction of the qubits available in a

quantum computer. Magic state injection is also a complex

process, requiring additional qubits and fast decoding.

The building blocks required for implementing this process are as

follows:

Building block 1 - High-fidelity magic state

High-quality magic states are essential for implementing fault-

tolerant T gates. Typically, these states are produced through a

process called magic state distillation, where multiple low-fidelity

magic states are refined to achieve a target quality. Unfortunately,

this process can consume the majority of the resources required

for large-scale quantum computations. Nonetheless, recent

advancements [24,25] have led to more efficient strategies for

preparing magic states, aiming to reduce the overhead associated

with distillation.

Interesting experiments in magic state distillation have been

performed starting from physical qubits, rather than logical ones,

in nuclear magnetic resonance quantum computers [26] and

trapped ions [27]. Other experiments in trapped ions [28] and

superconducting qubits [29,30] have demonstrated error-

suppressed magic states using so-called flag protocols. While

these are compelling demonstrations, they are difficult to scale.

More recently, magic state distillation was demonstrated at the

logical level on a neutral-atom quantum computer [31] using color

codes and a 5-to-1 distillation protocol. This experiment observed

improvements in the logical fidelity of the output magic states

compared to the input logical states. As impressive as this result is,

the researchers note themselves that a lot of work remains to be

done before magic state distillation is performed at scale.

Building block 2 - Magic-state injection and the backlog problem

To apply a fault-tolerant T gate to a logical qubit, a three-step

process known as magic state injection is used. First, a logical

CNOT is performed between the magic state and the target logical

qubit. Next, the modified magic state is measured logically, yielding

0 or 1. Based on this outcome, we determine whether a corrective

phase shift is needed, implemented via a Clifford. After this

process, the logical qubit's state is equivalent to having undergone

a T gate. This indirect approach ensures that the operation is

implemented in a fault-tolerant manner.

We wish to stress that injection involves logical branching on

execution. The branching is conditioned on the result of a logical

measurement. To trust the outcome of this measurement, the

syndromes that precede it will need to be decoded. Therefore,

quantum algorithms involving T gates require real-time error

correction. Moreover, if decoding is not done swiftly enough, a

syndrome backlog can accumulate, potentially leading to an

exponential slowdown of the algorithm and negating the benefits

of quantum computation. This last requirement calls for the

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

7

development of specialized decoding systems capable of

supporting reliable quantum computation at scale.

There are proof-of-concept demonstrations of magic state

injection in trapped ions [32], neutral atoms [33], and

superconducting qubits [34]. These experiments are limited in

scope, as proper implementation of magic state injection requires

high-quality magic states and full enablement for level-two

capabilities.

Building block 3 - Small scale universal logical quantum

algorithms

A quantum computer that supports the previously outlined

building blocks can run small-scale universal quantum

algorithms in a fault-tolerant manner. A natural first step may

be the fault-tolerant implementation of widely used algorithmic

primitives. One such example is the Quantum Fourier

Transform (QFT), a key subroutine in quantum algorithms for

differential equations, chemical systems, and cryptanalysis.

Executing a QFT involves both Clifford and non-Clifford

operations, and its circuit depth necessitates numerous cycles

of syndrome extraction.

The QFT was already demonstrated over 20 years ago using

NMR systems [35]. This early experiment did not incorporate

fault-tolerant techniques and was therefore not scalable to

commercially relevant problems. It wasn’t until 2024 that a

partially fault-tolerant version was realized on a trapped-ion

quantum computer [36]. Remarkably, the components

required for a fully fault-tolerant implementation are still under

development—showing just how challenging it is to build

reliable quantum computers. Nonetheless, progress continues,

and a fully fault-tolerant demonstration of QFT would mark a

defining milestone in the field.

How to use this framework

This framework provides a structured lens for assessing

progress in fault-tolerant quantum computing. Consider a

hypothetical announcement of a 100 logical qubit hardware.

Which algorithms can be executed on such a machine? To gauge

the significance of such advancement, practitioners could pose

critical questions such as:

1. What error correction code was employed? Understanding

the specific code used allows for an assessment of the

robustness of the error correction mechanism. Some codes

are not scalable or cannot even correct certain types of

errors (for instance the repetition code).

2. What was the logical error rate achieved, and how many

syndrome extraction cycles can the system sustain?

Compare physical and logical error rates to see if error

correction works. Is below-threshold operation achieved?

Can the system provide deeper circuits over longer

runtimes?

3. Was a universal logical gate set implemented? Were both

Clifford and non-Clifford gates executed in a fault-tolerant

way? How was logical fidelity maintained across multiple

syndrome extraction cycles?

4. What are the implications for scaling? Does the approach

scale to larger qubit counts and deeper circuits, or are there

architectural bottlenecks?

By asking these questions, practitioners can cut through

technical complexity and media hype to judge how close a given

experiment is to practical, scalable quantum computing.

Demonstrating a fault tolerant Shor’s

algorithm

With the framework established above, it is now possible to

understand what it takes to factor integers in a fault-tolerant

way—and what would have to happen before RSA is genuinely at

risk. A recent paper [37] analyzed the requirements to factor the

number 21 using a surface code implementation on

superconducting qubits and many of the key ideas are accessible

through the framework presented in this article.

The paper shows that factoring 21 fault-tolerantly requires 5

logical qubits with code distance 5 (i.e., 49 physical qubits per

logical qubit), and around 200 rounds of syndrome extraction—

executed in less than a millisecond. An additional ~750 physical

qubits are needed for overhead associated with CNOT and T

gates, with the T gates dominating the complexity.

While current hardware is not yet capable of meeting these

requirements concurrently, the experimental progress

referenced in this article—and aggressive roadmaps from major

quantum players—suggest a demonstration of this scale is

plausible in the next few years. It would mark a watershed

moment: the first truly fault-tolerant implementation of Shor’s

algorithm.

For contrast, a 2025 study [38] estimated the resources needed

to factor a 2048-bit RSA number using the same surface code on

superconducting qubits. The comparison below (Table 1)

illustrates how the jump from factoring 21 to factoring 2048-bit

integers requires both scaling and improvement at each level of

the stack.

Notably, while the hardware gap between these two estimates is

vast, researchers are making continuous improvements in

reducing resource requirements. Early estimates from 2009 [39]

projected that factoring a 2048-bit RSA number may likely

require 6.5 billion physical qubits and 410 days of runtime. In

[38], that estimate was reduced to below 1 million qubits — a

dramatic reduction by multiple orders of magnitude, due to

advances in error correction, compiler optimization, and circuit

design.

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

8

As hardware capabilities improve and algorithmic requirements

continue to shrink, these two trajectories are converging. This

reinforces the urgency to mitigate the quantum risk.

Table 1: Comparison of resource requirements for fault-tolerant implementations of

Shor’s algorithm.

This table contrasts the estimated qubit counts, code distances, runtimes, and T gate

requirements for factoring the number 21 versus a 2048-bit RSA number using surface

code error correction. It illustrates the gap between near-term demonstrations and

cryptographically relevant quantum attacks.

Conclusion

Quantum computing has made remarkable strides in recent

years. Experiments once considered theoretical milestones—like

below-threshold operation, logical gate execution, and even

partial implementations of fault-tolerant quantum algorithms—

are now becoming reality. Yet, the path to running

cryptographically relevant algorithms like Shor’s remains

challenging.

As this article outlined, progress depends not just on qubit

counts but on mastering a full stack of fault-tolerant capabilities.

These include reliable quantum memory, universal logical gates,

and real-time error correction—each of which are essential for

executing meaningful quantum algorithms at scale.

The framework introduced here provides a clear way to evaluate

these developments and communicate them without

oversimplification or hype. It helps decision-makers distinguish

between proof-of-concept experiments and genuine

breakthroughs with cybersecurity implications.

Researchers, cybersecurity professionals, and the media can use

this framework when assessing or reporting on quantum

advancements. It offers a grounded, structured way to cut

through ambiguity and understand how close the practical

quantum advantage really is—and what is still to be done to get

there.

The core takeaway: the industry is not there yet—but progress is

being made, faster than many expected. Understanding where

the industry is along this trajectory is essential to prepare for

what comes next. Waiting for a fully fault-tolerant quantum

computer before acting on the quantum risk may be too late.

References

[1] Skosana, U., Tame, M., Demonstration of Shor’s factoring

algorithm for N 21 on IBM quantum processors. Sci Rep. 2021.

[2] Monz, T. et al., Realization of a scalable Shor algorithm.

Science. 2016.

[3] Wootters, W. & Zurek, W., A single quantum cannot be

cloned. Nature. 1982.

[4] Albert, V., Faist, P., & Contributors., List of code lists. Error

Correction Zoo. n.d.

[5] Gidney, C., Shutty, N., & Jones, C., Magic state cultivation:

growing T states as cheap as CNOT gates. 2024.

[6] Kelly, J., Barends, R., Fowler, A., et al. State preservation by

repetitive error detection in a superconducting quantum circuit.

Nature. 2015.

[7] Marques, J., Varbanov, B., Moreira, M. et al., Logical-qubit

operations in an error-detecting surface code. Nat. Phys. 2022.

[8] C. Ryan-Anderson, et al., Realization of Real-Time Fault-

Tolerant Quantum Error Correction. 2021.

[9] Andersen, C.K., Remm, A., Lazar, S. et al., Repeated quantum

error detection in a surface code. Nat. Phys. 2020.

[10] Krinner, S., Lacroix, N., Remm, A. et al., Realizing repeated

quantum error correction in a distance-three surface code.

Nature. 2022.

[11]Sundaresan, N., Yoder, T.J., Kim, Y. et al., Demonstrating

multi-round subsystem quantum error correction using

matching and maximum likelihood decoders. Nat Commun.

2023.

[12] Google Quantum AI. Suppressing quantum errors by scaling

a surface code logical qubit. Nature. 2023.

[13] Google Quantum AI and Collaborators. Quantum error

correction below the surface code threshold. Nature. 2025.

[14] Ryan-Anderson, C. et al., Realization of Real-Time Fault-

Tolerant Quantum Error Correction. 2021.

[15] Wang, Y. et al., Fault-tolerant one-bit addition with the

smallest interesting color code. Science Advances. 2024.

[16] Bluestein, D., Evered, S., Geim, A. et al., Logical quantum

processor based on reconfigurable atom arrays. Nature. 2024.

[17] Ryan-Anderson, C., Implementing fault-tolerant entangling

gates on the five-qubit code and the color code. arXiv. 2022.

[18] Postler, L., Heuβen, S., Pogorelov, I. et al., Demonstration of

fault-tolerant universal quantum gate operations. Nature. 2022.

[19] Blustein, D., Evered, S.J., Geim, A.A. et al., Logical quantum

processor based on reconfigurable atom arrays. Nature. 2024.

[20] Erhard, A., Poulsen-Nautrup, H., Meth, M. et al., Entangling

logical qubits with lattice surgery. Nature. 2021.

[21] Besedin, I. et al., Realizing Lattice Surgery on Two Distance-

Three Repetition Codes with Superconducting Qubits. 2025.

Why Quantum Computers Aren’t Cracking RSA Yet:

A Practical Guide to Quantum Error Correction

9

[22] Bluestein, D., Evered, S.J., Geim, A.A. et al., Logical quantum

processor based on reconfigurable atom arrays. Nature.. 2024.

[23] Reichardt, B. et al., Logical computation demonstrated with

a neutral atom quantum processor, Arxiv. 2024.

[24] Litinski, D., Magic State Distillation: Not as Costly as You

Think. Quantum. 2019.

[25] Gidney, C., Shutty N., & Jones, C., Magic state cultivation:

growing T states as cheap as CNOT gates. Arxiv. 2024.

[26] Souza, A., Zhang, J., Ryan, C. et al., Experimental magic state

distillation for fault-tolerant quantum computing. Nat Commun.

2011.

[27] Brown, N., et al., Advances in compilation for quantum

hardware -- A demonstration of magic state distillation and

repeat-until-success protocols. Arxiv. 2023.

[28] Postler, L., Heuβen, S., Pogorelov, I. et al., Demonstration of

fault-tolerant universal quantum gate operations. Nature. 2022.

[29] Ye, Y., Logical Magic State Preparation with Fidelity beyond

the Distillation Threshold on a Superconducting Quantum

Processor. APS. 2023.

[30] Gupta, R.S., Sundaresan, N., Alexander, T. et al., Encoding a

magic state with beyond break-even fidelity. Nature. 2024.

[31] Rodriguez, P., Experimental Demonstration of Logical Magic

State Distillation. Arrive. 2024.

[32] Ryan-Anderson, C., Realization of Real-Time Fault-Tolerant

Quantum Error Correction. APS. 2021.

[33] Postler, L., Heuβen, S., Pogorelov, I. et al., Demonstration of

fault-tolerant universal quantum gate operations. Nature. 2022.

[34] Kim, Y., Sevior, M., & Usman, M., Magic State Injection on

IBM Quantum Processors Above the Distillation Threshold. Arxiv.

2024.

[35] Weinstein, Y.S. et al., Implementation of the Quantum

Fourier Transform. APS. 2001.

[36] Tao, R., Enhancing Real-World Active Speaker Detection with

Multi-Modal Extraction Pre-Training. Arxiv. 2024.

[37] Kurman, Y., Controller-decoder system requirements

derived by implementing Shor's algorithm with surface code.

Arxiv. 2024.

[38] Gidney, How to factor 2048 bit RSA integers with less than a

million noisy qubits. Arxiv. 2025.

[39] Van Meter, R. et al., Distributed Quantum Computation

Architecture Using Semiconductor Nanophotonics. ArXiv. 2009

This article contains general information only and the authors are not, by means

of this article, rendering accounting, business, financial, investment, legal,

tax, or other professional advice or services. This article is not a substitute for

such professional advice or services, nor should it be used as a basis for any

decision or action that may affect your business. Before making any decision or

taking any action that may affect your business, you should consult a qualified

professional advisor.

The authors shall not be responsible for any loss sustained by any person who

relies on this article.

As used in this article, “Deloitte” means Ditte & Touche LLP, a subsidiary of

Deloitte LLP. Please see www.deloitte.com/us/about for a detailed description of

our legal structure. Certain services may not be available to attest clients under

the rules and regulations of public accounting.

Copyright © 2025 Deloitte Development LLC. All rights reserved.

	Introduction
	The rapid advancement of quantum computing is bringing businesses closer to real-world applications of this transformative technology. One significant application is solving the integer factorization problem using Shor’s algorithm. Since integer facto...
	As quantum computing evolves, estimating when it might compromise current cryptographic protocols becomes crucial. These insights can help guide decision-makers on the urgency of adopting quantum-safe solutions.
	To date, small-scale demonstrations of Shor’s algorithm—such as factoring 21 [1,2]—have been successful but remain unscalable due to the absence of quantum error correction. Quantum systems are inherently unstable, and reliable error correction is ess...
	A common misconception is that progress depends only on increasing qubit (the quantum version of a bit) counts. In practice, scalability hinges on reliability, error suppression, and coordination. Without this fault tolerance, more qubits just mean mo...
	Amid rapid technological progress, a communication gap has emerged: research is too technical for non-specialists, while media can sometimes exaggerate progress, which can result in misconceptions that overlook critical nuances. This article aims to b...
	The quantum error correction process
	Logical operations
	Building blocks for a fault-tolerant quantum computer As outlined in the previous sections, numerous elements need to work in harmony to enable the execution of quantum algorithms in a fault-tolerant manner. Many of these components present experiment...
	Level 1: Error correction of quantum memory
	At this level, the focus is on quantum error correction within quantum memory, without applying operations that alter information encoded in the logical qubit. Building block 1: Logical qubit encoding and syndrome extraction
	The first building block involves experimentally demonstrating the various elements of a quantum error correction code. This includes encoding data in a logical qubit, extracting syndromes, and decoding.
	Early demonstrations of these fundamental properties began over 20 years ago and since then, many types of codes (such as repetition codes [6], surface codes [7], color codes [8]) have been tested. Initially, the logical error rates in these demonstra...
	Building block 2: Multiple syndrome extraction cycles
	Due to the fragility of the qubits, syndrome extraction cycles need to be executed continuously throughout the runtime of the quantum algorithm. Such cycle can take anywhere from microseconds (for superconducting qubits) to milliseconds (for ions and ...
	Demonstrating multiple cycles necessitates improvements in the error rate of the physical qubits and addressing errors caused by other processes, such as measuring the ancilla qubits and applying physical gates. In recent years, several experiments ha...
	Building block 3: Below-threshold operation and increasing code size
	As described in an earlier section, increasing the code distance enhances the logical error rate only if the physical error rate remains below a certain threshold. In 2024, Google [13] provided a thorough demonstration of below-threshold operation. Th...
	Level 2: Fault tolerant logical Clifford operations
	Building on the foundation established in Level 1, this level examines single and two-qubit Clifford operations, essential for executing quantum algorithms.
	Building block 1: Single qubit logical operation
	Various methods are available for implementing single qubit gates (Pauli gates, Hadamard, and S). These methods range from directly applying the physical gate to all physical qubits, to more advanced techniques like lattice surgery. Demonstrations of ...
	Building block 2: Two qubit logical operation
	In our chosen universal gate set, the CNOT gate is the only two-qubit gate, playing a critical role in quantum algorithms through its function in creating entanglement. One way to implement a CNOT between two logical qubits is to perform pairwise phys...
	Logical CNOT gates between color-code logical qubits have been demonstrated on both trapped-ion systems [17,18] and neutral-atom platforms [19]. Additionally, logical CNOTs between pairs of distance-7 surface-code qubits have been realized using neutr...
	Building block 3: Fault tolerant Clifford circuits
	Level 3: Fault tolerant logical non-Clifford operations
	Every quantum algorithm offering exponential speedups involves both Clifford and non-Clifford gates, such as the T gate. Most quantum error correction schemes natively support the fault-tolerant implementation of Clifford gates, while non-Clifford gat...
	Magic states are needed in large quantities, and their preparation consumes a substantial fraction of the qubits available in a quantum computer. Magic state injection is also a complex process, requiring additional qubits and fast decoding.
	The building blocks required for implementing this process are as follows:
	Building block 1 - High-fidelity magic state
	High-quality magic states are essential for implementing fault-tolerant T gates. Typically, these states are produced through a process called magic state distillation, where multiple low-fidelity magic states are refined to achieve a target quality. ...
	Interesting experiments in magic state distillation have been performed starting from physical qubits, rather than logical ones, in nuclear magnetic resonance quantum computers [26] and trapped ions [27]. Other experiments in trapped ions [28] and sup...
	Building block 2 - Magic-state injection and the backlog problem
	To apply a fault-tolerant T gate to a logical qubit, a three-step process known as magic state injection is used. First, a logical CNOT is performed between the magic state and the target logical qubit. Next, the modified magic state is measured logic...
	We wish to stress that injection involves logical branching on execution. The branching is conditioned on the result of a logical measurement. To trust the outcome of this measurement, the syndromes that precede it will need to be decoded. Therefore, ...
	There are proof-of-concept demonstrations of magic state injection in trapped ions [32], neutral atoms [33], and superconducting qubits [34]. These experiments are limited in scope, as proper implementation of magic state injection requires high-quali...
	Building block 3 - Small scale universal logical quantum algorithms

	A quantum computer that supports the previously outlined building blocks can run small-scale universal quantum algorithms in a fault-tolerant manner. A natural first step may be the fault-tolerant implementation of widely used algorithmic primitives. ...
	The QFT was already demonstrated over 20 years ago using NMR systems [35]. This early experiment did not incorporate fault-tolerant techniques and was therefore not scalable to commercially relevant problems. It wasn’t until 2024 that a partially faul...
	How to use this framework
	Demonstrating a fault tolerant Shor’s algorithm
	Conclusion
	References

