
Wildfires—a terrifying, but by no means a 
new phenomenon—have become more 
commonplace, escaping an environmental 
equilibrium and exacerbating the very 
conditions that give rise to their 
frequency and severity. The Californian 
wildfires of 2020 released 91 million 
metric tons of the greenhouse gas CO2 
into the atmosphere, considerable 
against the global CO2 absorption 
capacity of forests estimated at 7.6 billion 
metric tons annually.1 The damage that 
ensues is substantial and enduring—what 
is lost in days can take generations to 

recover. Besides their longer-term 
environmental consequences, wildfires 
lay waste to natural resources, and can 
harm or tragically end the lives of 
residents and those who risk life and limb 
to bring the inferno under control.

Forecasting wildfires has been a focus of 
research for decades, but their growth in 
number and size demands more 
attention and better tools to tackle this 
environmental issue. The FireAId 
initiative, spearheaded by the World 
Economic Forum (WEF), aims to address 

one of the opportunities in fighting 
wildland fires through the use of artificial 
intelligence (AI) to help those fighting fires 
better predict where fire could start and 
how active fires may spread.

Deloitte and Nvidia have collaborated on 
this initiative, studying global fire history 
and trends, speaking with numerous 
firefighters, analyzing data and selecting 
the appropriate technologies to build and 
pilot tools to help firefighters tackle the 
escalation in wildfires. 

Introduction

Fighting Fire with AI
Wildfires are a growing problem, their flames 
fanned by global warming
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This report provides 
a view on the 
challenges global 
warming presents to 
modeling of wildfires 
and how data, tools 
and technology can 
help in the fight 
against one of the 
most formidable 
effects of climate 
change around 
the world.

Firefighters face are likely facing an uphill 
battle—drier vegetation is quicker to ignite, 
defying experience-based forecasting 
and putting resources and budgets under 
pressure. Timely response is critical, 
as is selection of the right intervention 
measure. This has motivated research 
and commercial offerings over the past 
decades, much of which rooted in the 
seminal work of Richard C. Rothermel in 
1972 performed for the USDA Forestry 
Service.7 His studies of wildfire were the 
first to quantify the importance of “fuel,” 
the combustible living or dead material in 
the path of a fire, such as grasslands or 
forests. Rothermel categorized differing 
burn characteristics among fuel types—
grasslands, shrublands, forests, down to 
different species of tree—as well as the 
density of foliage and moisture in the 
ground soil. His research also captured 
details, such as the effect of sparks swept 
into the fiery updraft, later descending on 
nearby vegetation and advancing the fire-
front across barriers such as roads. The 
focus on fuel was a paradigm shift away 
from viewing wildfire as being driven mostly 
by momentary weather conditions.

The resulting mathematical models have 
been a foundation for further research ever 
since, as well as the governing equations 
behind wildfire forecasting software. 
Most prediction tools focus on forecasting 
the spread of fires that have already ignited. 
They are also limited in their forecasting 
accuracy. This new effort aspires to harness 
advances in technology, notably in AI and 
high-performance computing, to improve 
upon the models derived by Rothermel and 
those who followed in his footsteps.

A moving target

Climate change is contributing to both the 
incidence and the intensity of wildfires, 
which makes predicting them ever more 
of a challenge. Rising temperatures have 
affected weather patterns, diminishing 
natural defenses, such as regular rainfall 
and rivers flowing from snow-capped 
mountains. Drier ground soil, grasslands 
and forests provide prime conditions for 
wildfires to ignite and propagate. Changes 
to terrain and weather diminish predictive 
power of historical data, placing the world 
in unfamiliar territory where hard-earned 
experience and intuition may no longer 
work as reliably as before. Well aware of 
this, environmental authorities around the 
world do account for ambient conditions 
in their fire risk metrics. Buildup Indexes 
(BUI) focus on “fuel,” the combustible 
organic matter in vulnerable forests and 
shrublands. The Initial Spread Index (ISI) 
complements BUI by integrating the effects 
of wind. BUI and ISI are relevant to both 
risk of wildfire outbreak and the rate by 
which existing fires spread. Their collective 
effect is captured in the Canadian Fire 
Weather Index (FWI), which combines 
three fuel moisture codes alongside three 
fire behavior indices, and is updated daily 
on readings of temperature, wind speed, 
relative humidity, and precipitation.2

The metrics paint a worrying picture. 
FWI has risen consistently for 50 years.3 
The past 18 years have seen the most 
extensive damage.4 There have been 
approximately 1.5 million wildfires since 
2000, of which 237 burned over 100,000 
acres and 15 over 500,000 acres. Since 
2000, an average of 7 million acres have 
burned annually versus 3.3 million in 
the prior decade.5 Fire danger zones are 
expected to nearly double under 3 °C 
global warming scenarios in European 
countries most affected by forest fires.6
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Sometimes features may have an inverse 
effect on outbreak or spread. Roads, for 
example, are a proxy for human activity, 
positively correlated with outbreak. 
However, they may be negatively correlated 
with spread of fire, acting as a barrier to 
an advancing fire-front. Other examples 
include population density and biomass. 
Up to a point, population density may 
imply more risk of humans causing fire. 
After a certain density, however, we 
can safely presume an asphalted urban 
area: fires will still occur, but not wildfire. 
The duality also exists for biomass, an 
indicator for fuel. Dry biomass is highly 
combustible and a good risk indicator 
for fire. Wet biomass may impede the 
ignition and advance of wildfire. These are 
examples of the non-linearity of the wildfire 
prediction problem and why historical 
approaches have enjoyed limited success. 
Properly accounting for all the inputs, their 
(non-linear) correlations to prediction 
targets, and their inter-relationships is a 
complicated and computationally intense 
undertaking. It is fertile ground for shortcut 
patterns found by AI.

“Pre-fire” and “active-fire” are two very 
different problems, influenced only in 
part by the same factors. The “pre-fire” 
problem of wildfire outbreak is driven 
by a combination of weather conditions, 
ground conditions, and human activity. 
Worthy of note: most wildfires trace their 
origins to human activity, up to 85% in the 
United States,8 including unextinguished 
cigarettes, campfires, faulty power lines, or 
other causes. The “active-fire” problem of 
wildfire propagation not only depends on 
weather and fuel, but also on topographical 
features such as incline of the terrain and—
barring firefighting measures— much less 
on human activity. The two problems differ 
not only in feature importance, but in the 
very nature of the problem. 

There is an aspect of randomness with 
the “pre-fire” outbreak problem that limits 
predictability to any of number of potential 
zones where fuel could ignite, rather 
than pinpointing exactly which of those 
zones will result in a wildfire. The risk of 
outbreak in one zone depends mostly on 
conditions within its boundaries, as ignition 
transferred from neighboring zones could 
be the propagation problem. This dynamic 
would seemingly allow reducing outbreak 
prediction to only a temporal problem, 
given perfect information for each zone. 
The reality from combining weather, fuel, 
topographical, and human activity data 
is that information is far from perfect or 
even uniform, giving greater relevance to 
information from neighboring zones. 

The “active-fire” problem of predicting 
potential propagation pathways is 
inherently dependent on information from 
neighboring zones. While there continues 
to be an element of randomness, it is unlike 
that of the “pre-fire” problem since fire 
has already ignited. Propagation can be 
reasonably modeled more deterministically 
combining the pattern-recognition 
components of a spatio-temporal model 
with known physical dynamics. For 
these reasons, any useful forecasting 
model for either “pre-fire” or “active-fire” 
will necessarily address both temporal 
and spatial context, requiring a more 
sophisticated architecture.

How to forecast a fire

Wildfire forecasting has both a 
geospatial and temporal dimension. 
Any applied AI method must be well 
adapted to predict along both of 
those dimensions. Algorithms built 
to solve other, generally similar 
problems provide a good starting 
point. Geospatial can be seen as a 
computer vision problem, temporal 
as a time-series forecasting problem. 
Examples such as autonomous driving 
and weather prediction contain 
both dimensions, opening new 
opportunities for wildfire prediction.

Key questions should be answered before 
delving into the tech itself: What are 
the exact prediction goals? What is the 
scope? Limiting to “active-fire” (spread) 
alone would potentially overlook vital 
preparation time. Settling on “pre-fire” 
(outbreak) would risk distracting firefighters 
with too many possibilities. How precise 
must the forecasts be in order to improve 
over traditional techniques? What is the 
forecast horizon? Greater accuracy may 
be achievable, if limited to 24 hours, but 
may inadvertently deprive firefighters of 
relevant information beyond that horizon. 
Even if longer-range forecasts become less 
precise, they may nonetheless have value.

Questions as these illustrate how wildfire 
risk management requires a collection 
of predictions. In order to target each 
forecast horizon individually, the Deloitte 
strategy for managing the risk of wildfire 
comprises three forecasting aims—three 
distinct problems:

1.  The probability of wildfire outbreak – 
the “pre-fire” problem

2.  The predicted velocity (trajectory 
and speed) of wildfire spread – 
the “active-fire” problem

3.  The expected reaction of wildfire 
to intervention measures – 
the “response” problem



Another challenge lies in balancing 
relevance versus overfitting: generalization 
of a model beyond its training data is 
critical for success. (Overfitting: a model 
perfectly correlated to its training data 
will effectively only be able to predict the 
training set and—often spectacularly—
fail when attempting to predict on new 
input data.) This principal raises a central 
design question of balancing model 
complexity, accuracy and efficiency: for 
instance, whether a single large model or 
multiple, dedicated models (such as per 
geography) would enjoy higher predictive 
power. To what degree can models learn 
from a larger pool of data, full of multi-
dimensional patterns? Or do large models 
simply become untenable, beleaguered 
by complexity needed to weight features 
differently depending on other features, 
capturing the intricate combinations from 
one geographical region to another? 

Arguably, the most crucial ingredient to 
building effective AI models is the data. To 
even warrant an AI approach, a sufficient 
quantity of data is required—a broad 
selection of features and a sufficiently 
long history of records. This data needs 
to be representative and of an adequate 
quality – grounded in accurate and 
complete readings. Given the “nowcasting” 
immediacy of the forecasting problem, 
the data is required in a timely, frequently 
updated fashion: the temporal dimension. 
To provide useful guidance, the data must 
be available in reasonable granularity 
or resolution: the geospatial dimension. 
Equally important considerations are 
accessibility, procurement cost, and ease 
of processing (e.g., size, formats, and 
metadata).
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Modeling challenges

As is typical for problems addressed with 
AI, we are dealing with probabilities and not 
certainties. Beyond mere random noise 
variation, there is a complexity of external 
factors along both the geospatial and 
temporal dimensions that we can, at best, 
estimate as random. These are particularly 
acute as relates to the “pre-fire” problem: 
when and where exactly lightening may 
strike, or which hikers may not properly 
put out a cigarette along which part of 
their journey. The “active-fire” problem 
is not entirely immune to unpredictable 
external factors, but we estimate that 
modellable factors carry sufficient 
weight to govern most of the behavior 
of wildfire propagation. For predicting 
the outbreak of wildfire, we must be 
content with providing a heat map of 
probabilities across the entire geographic 
region under consideration which reflects 
ignition conditions.

A significant modeling challenge is shifting 
data distributions brought on by global 
warming. Climate change can affect 
weather patterns, ground moisture, 
biomass and many other factors in ways 
that we may only partially understand. 
We may nevertheless safely assume that 
wildfires will become more commonplace 
and more ferocious against a backdrop 
of higher temperatures and drier fuel. 
This poses a risk to machine learning (ML) 
prediction approaches, namely, that data 
on which models are trained may soon 
no longer be representative of data that 
the model will encounter in operation, 
significantly impeding the model’s 
predictive power. A model that predicts 
how wildfires used to behave is of little use 
to firefighters. It is therefore tantamount 
to reliable ML models to ensure training 
data is not only representative at the 
time of training but also into the future. 
An effective measure to help manage 
this robustness risk is frequent re-
training, essentially re-calibration, one 
of the core tenets of machine learning 
operations (MLOps).

A significant 
modeling challenge 
is shifting data 
distributions 
brought on by global 
warming. Climate 
change can affect 
weather patterns, 
ground moisture, 
biomass and many 
other factors in ways 
that we may only 
partially understand. 

Availability

Accessibility

Volume 

Frequency 

Content 

Compatibility

Data 
Needs
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 • ERA5 – contains a wide set of features 
and dates back to 1959. The downside: 
it is updated only every 4-6 weeks and 
contains no forecast information. It is too 
infrequently updated to be of any use for 
fast-changing outbreak risks or advances 
of a fire-front, however it provides ample 
history to train a forecasting model. 

The Deloitte approach maximizes the 
use of both datasets by splitting each 
prediction objective—outbreak and 
spread—into a two-stage problem:

1. Nowcasting the first 24 hours – using 
highly current information for greater 
reliability

2. Forecasting the 2nd to 7th day – using 
longer data histories for longer-term 
predictive power

Doing so would provide firefighters with 
both highly up-to-date information, as 
well as a view into the near-term potential 
development. Measured in weeks, NOAA’s 
history amounts to a paltry 108 datapoints, 
hardly sufficient for a week-long forecast. 
However, NOAA’s thrice daily actuals and 
forecasts over two years provided us nearly 
5,000 datapoints—a decent foundation, 
and one that adds six new datapoints 
every day. Limiting the application of NOAA 
data to forecasting only the first 24 hours 
makes the dataset more viable. Leveraging 
both the historized actuals and forecasts 
provides an additional accuracy gauge. The 
ERA5 dataset, while coarse to nowcast the 
next 24 hours, could be applied to a less 
time-sensitive, longer-range forecast. Using 
the data from 1979 through 2015 would 
suffice to train a second forecasting model.

The nature of each of these distinct 
forecasting problems and the associated 
appropriate datasets demanded special 
attention to selection of the appropriate 
algorithm and model architecture.

 • MetNet2 – developed by Google for 
predicting rainfall and trained on the 
NOAA dataset, MetNet is particularly 
well suited to the spatio-temporal 
“propagation” problem. It has an 
unparalleled spatial resolution of 1 km², 
a degree of precision highly suited to the 

prediction would likely require 10-50 times 
that coverage to be effective. Free versions 
are not an option (beyond use for static 
topographical data) due to the sporadic 
update frequency. Custom data sources 
such as drones could provide a dramatically 
higher geospatial and temporal resolution 
to collect wildfire propagation data in 
selected areas, but this would likely require 
a dedicated investment into hardware and 
their operation. Unmanned aerial vehicles 
(UAVs) are already in use in some countries. 
Not only can they provide close-range 
reconnaissance without endangering 
firefighters, they can also play an active 
role in fire defense, by igniting pre-emptive 
controlled burns to starve a wildfire 
of fuel in a particular pathway.9 Some 
forests are even equipped with advanced 
smoke detectors.10 Experiments are also 
underway to extend sensing capabilities 
using microphones and algorithms attuned 
to the crackly sounds of fire and of wildlife 
reacting to fire.11

As fire departments frequently 
emphasized, the timeliness of data is of 
critical importance to fighting fires. Building 
a useful wildfire forecasting tool with AI 
would require a rich dataset over a long 
period of time that is updated several times 
a day. We were not able to find any dataset 
that satisfies those criteria. Satellite data, 
in addition to its “bulkiness,” is generally 
updated too infrequently to be of practical 
use to the short-term requirements of 
wildfire forecasting. Weather data provides 
a more compact alternative, much of it 
derived from satellite images, but pre-
processed and reduced to specific features 
in which users are interested. Of the many 
other datasets researched, two weather 
datasets complemented each other well, 
providing a practical way forward: 

 • NOAA (National Oceanic and 
Atmospheric Administration) – contains 
both actual weather readings and 
historical forecasts, each updated several 
times a day. The downside: the NOAA 
dataset exists only since 2020. It is timely 
and well-suited to informing on risk of 
wildfire outbreak and spread, but lacks 
the history to train an AI model of the 
desired forecasting time horizon (7 days).

But first, which variables (features) do we 
need for prediction? Taking inspiration from 
Rothermel, data needs have been roughly 
divided into three categories:

 • Topography – static features of terrain, 
altitude, inclines, natural landmarks 
such as lakes, rivers, mountaintops, and 
man-made landmarks such as hiking 
paths, roads and powerlines. (Man-made 
landmarks are also effectively a proxy for 
human activity, a key component for the 
“pre-fire” problem of wildfire outbreak.)

 • Fuel – gradually evolving features of 
surface conditions such as moisture of 
the soil, density and types of vegetation

 • Weather – often volatile conditions in 
the air and lower atmosphere such as 
temperatures, wind speeds, precipitation 
and humidity

Topographical data are basically static over 
time: the corresponding satellite images 
need only be updated annually. Raw 
satellite images could also be used to gauge 
fuel conditions: Sentinel-2 captures spectral 
frequencies suitable for estimating biomass 
and thus the presence and combustibility 
of fuel. Dynamic data sources represent a 
greater challenge, which may vary in “shape” 
(e.g., breadth of features, granularities, 
and update intervals). The data pipeline 
and repository are flexibly structured to 
accommodate these eventualities. Data 
volumes from frequently updated sources 
can quickly get out of hand, particularly 
for “bulky” sources such as raw satellite 
images. They can also be expensive 
to source in a useful form: while ESA’s 
Sentinel 1 and 2 images are available to the 
public, in practice, stitching them together 
may only be feasible through non-free 
application programming interfaces (APIs) 
that provide the necessary coordinates. 
Procurement, processing, and storage costs 
would become a substantial factor at the 
geographic scope of wildfire forecasting.

Sentinel 1 and 2 are also limited in spatial 
resolution (10 m²) and frequency (between 
them every 5 days). More granular sources 
are available, but expensive: 3 m² resolution 
at daily intervals costs roughly US$20,000 
per year for 100 km² coverage. Wildfire 
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are enacted. Beyond budgetary concerns, 
downstream reactive strategies pose 
greater risk to lives, habitats and property. 
In manufacturing, repair costs climb 
exponentially the later a defect is found. 
The same holds true with wildfires: costs to 
manage them escalate the more expansive 
the fire-front becomes.

Whereas predicting outbreak and spread 
of wildfires can gain valuable preparation 
time, simulation can improve effectiveness 
of response. The ability to vet firefighting 
strategies in faster-than-real-time using 
a representative digital twin constitutes 
a technological upgrade compared with 
current planning capabilities. Questions 
about aerial or ground-based firefighting 
methods, optimal starting points, length 
and width of intervention activity, or the 
necessary amount of water or the flame 
retardant Phos-Chek could be evaluated 
before wasting time and resource on 
potentially hit-or-miss measures. 

The usability of such a prediction and 
scenario simulation tool is nearly as 
important as its accuracy. Gaining control 
over wildfires is a race against the clock, not 
a calm environment to ponder possibilities. 
It is a raging battle against a foe who 
knows no indecision and needs no rest. 
Tools should be intuitive and intelligently 
designed to require as few keystrokes 
and clicks as possible for firefighters to 
immediately access the information they 
need. Anything less will result in tools that 
are not used, reverting to gut-feel methods 
of the past. After all, the best information, 
if delivered too late, is less useful than 
approximations available on time. 

From prediction model 
to risk management 
solution

Long-term, the predictions could provide 
the necessary input to guide a semi-
autonomous wildfire risk management 
ecosystem comprised sensors and 
actuators. A combination of permanent 
sensors on the ground or up in tall 
trees, mobile phones, roving drones, 
and satellites could create a web to 
collect relevant information. A collection 
of AI models would make sense of this 
data, finding patterns with predictive 
power for both outbreak and spread 
of wildfires. If these prediction engines 
were sufficiently precise and reliable, they 
could automatically launch scenarios to 
test intervention strategies in a digital 
twin and ultimately trigger actuators of 
various kinds: sprinklers, targeted drone 
flights, autonomous vehicle fire trucks, 
and alerts sent to human firefighters. With 
enough foresight, some actions might 
even prevent wildfire outbreak rather than 
contain the fire—preventative maintenance 
for the forest. Autonomous AI systems 
are, however, significantly more complex 
and risks are greater when they fail. An 
application of autonomous AI to systems 
designed to provide safety are considered 
critical infrastructure and considered by 
regulation such as the EU AI Act as “high 
risk systems,” requiring the utmost scrutiny 
and adherence to high-quality standards.

Wildfire risk management strategies 
generally fall into three categories: 
prevention, containment, and response. 
Prevention measures generally focus on 
issuing and enforcing rules governing 
human activity. Containment measures 
center around pruning forests with cleared 
corridors that would halt the progress 
of a runaway fire. Response measures 
comprise classical firefighting interventions, 
dousing flames from the air or from the 
ground. Cost factors differ widely per 
strategy. Enforcement measures cost little 
individually, however require widespread 
implementation year-round. Firefighting 
interventions are event-triggered yet 
demand substantial resources when they 

forecasting demands in geolocating an 
advancing fire-front.

 • FourCastNet2 – adaptive Fourier neural 
operators implemented in the physics-
informed Modulus SDK by NVIDIA. 
The original was trained on ERA5 data 
to predict global weather, particularly 
extreme events such as hurricanes 
with a spatial resolution of 25 km². 
The adaptation for wildfire (version 2), 
also trained on ERA5, focuses on 
conditions for wildfire and aims for more 
precise resolution than the 25 km² of its 
predecessor, FourCastNet. 

For both, the F1 score (alongside 
precision, recall and ROC) is the most 
appropriate optimization metric. F1 is the 
harmonic mean of precision and recall, 
where precision indicates the portion of 
predictions that were accurate (versus false 
alarms), while recall indicates the portion 
of accurate predictions over all cases 
that should have been predicted (total 
relevant results). The choice of metric is 
important to ensure the AI model optimizes 
toward the right goal. Accuracy, or correct 
predictions over all relevant results, is 
not a suitable metric, as the incidence of 
wildfire outbreak can still be considered an 
outlier event—not normally distributed, but 
rather a skewed distribution with a long tail. 
Concretely in the case of wildfire, precision 
shows how many wildfire predictions 
correspond to actual wildfires, where recall 
shows how well the model predicted all 
actual wildfires. Optimizing on “accuracy” 
would suggest the simplistic function 
“y = 0” to predict wildfire outbreak, which 
would be, on average, highly accurate, while 
failing to catch a single wildfire.
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 • Computational barriers – spatio-
temporal model complexity requires 
powerful computing capabilities (GPUs)

 • Tech expertise barriers – talent can 
be scarce, and it is often difficult to find 
staff for commercial projects, let alone 
dedicate staff to work on long-term, non-
paying initiatives 

 • Domain barriers – expertise in AI alone 
will likely fail without involving experts, 
scientists in wildfire

 • Management barriers – busy firefighters 
must invest some time to help shape 
the solution and must test the new tech 
versus traditional experience methods

FireAId first milestones

Deloitte’s wildfire risk management 
solution uses a visual interface to evoke 
instant understanding and effortless 
data entry to accelerate the use of AI and 
simulation tools. Borrowing from concepts 
of virtual reality, it aims to serve as an 
extension to the firefighter’s mind, at once 
both a canvas and a calculator on which 
to design, test and articulate optimum 
intervention measures when every second 
counts. This is greatly facilitated by the 
close alliance between Deloitte and NVIDIA, 
which provide both the high-performance 
GPU-hardware to train complex AI models, 
as well as the software, such as the 
Modulus software development kit (SDK) 
to complement data-shaped AI algorithms 
with known laws of physics. NVIDIA 
Omniverse integrates these multiple 
components and presents them in an 
interactive, visually compelling interface.

The Deloitte-NVIDIA solution was in 
mid-development at the time of the WEF 
publication. An encouraging start in this 
direction is made by another participant in 
the FireAId initiative. Koç Digital has piloted 
a project focused on the Turkish coastal 
region working closely with the Turkish 
Ministry of Agriculture and Forestry, which 
provided the data. Koç has constructed 
a first multi-variate prediction model for 
wildfire outbreak. Koç leveraged local data 
optimized for the region in their focus. 
The Deloitte approach leverages globally 
available data to maximize portability to 
other geographies.

Both the Deloitte and Koç teams are well 
aware that this effort will be an iterative 
journey, measured in months and even 
years. There are several significant barriers 
that stand in the way of developing 
and deploying effective wildfire risk 
management solutions:

 • Data barriers – differing standards and 
availability, bulkiness of satellite data, 
costly APIs

 • AI/ML barriers – the elements of 
randomness, non-linearity, and data 
sparsity prevent directly training a 
supervised model on “wildfire occurrence”

An application of 
autonomous AI to 
systems designed 
to provide safety 
are considered 
critical infrastructure 
and considered by 
regulation such as 
the EU AI Act as 
“high risk systems,” 
requiring the 
utmost scrutiny and 
adherence to high-
quality standards.
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Conclusion

Bringing wildfire under control is a difficult, dangerous 
and exhausting endeavor. Climate change is only making 
it harder. Firefighters play a critical role, not only in 
limiting the damage to life and resource felt locally and 
immediately, but also in slowing the long-term vicious cycle 
of wildfires themselves contributing to global warming. 
Unlike many other ecological measures, the benefits of 
effective wildfire management are felt immediately as well 
as over the longer term.

The development of advanced tools to help fight wildfires, and 
combat the damage of climate change in general, is in the public’s 
interest. Developing such tools is a major undertaking, and all 
stakeholders have a role to play:

 • Firefighters must be involved in advancements to ensure 
usability of the tools. They are both “customer” and “co-creator,” 
contributing extensive experience in fighting fires. Yet they 
lack the means, with more pressing funding concerns, such as 
replenishing aging equipment. 

 • Governments will be key in driving the agenda, mobilizing 
resources, setting data standards, and investing in hardware 
(e.g., sensors, data collection, and actuation). They must stay the 
course over the scope of activities and facilitate the international 
cooperation required to solve a problem of global scale. 

 • Public-private partnerships spearheaded by internationally 
cooperating government ministries combine the know-how 
with the authority to make a positive impact. The field requires 
innovation, where the private sector can take the lead. Where 
the profit motive drives innovation in private enterprise, it may 
not be necessary with wildfire. The desire to make a positive 
contribution, passion of individuals for the cause, marketing 
power for organizations will certainly play a role. However, 
mobilizing the private sector must at least cover costs if it is 
to be sustainable.

Leaders will likely be challenged articulating the need to balance 
short-term needs with long-term environmental security. It will be 
a long haul before we reach the stage of semi-autonomous wildfire 
risk management. The world is past the point where this can be a 
question of whether to invest into wildfire risk management—and 
sustainability in general—rather a question of how to best put 
scarce resources to work.
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