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Around the globe, infrastructure systems 
are under growing pressure—from extreme 
weather events and aging assets to the 
demands of the energy transition, urbanization, 
and accelerating technological change. 
Yet amidst these challenges lies a significant 
opportunity: to envision and create 
infrastructure that is more resilient, 
intelligent, and adaptable.

Artificial intelligence (AI) is rapidly transitioning 
from being experimental to being an important 
part of the solution. Leaders are recognizing 
AI not just as a technical innovation, but one 
of the strategic tools that can be used to make 
infrastructure systems more resilient. Whether 
through predictive maintenance, digital twins, or 
AI-enabled early warning systems, AI is helping 
public and private sector leaders make faster, 
smarter and more accurate decisions—and in 
doing so is helping to mitigate risks, reduce costs, 
lower recovery times, and maintain vital services 
to support thriving societies and economies.

Examples are already emerging, like the use of 
digital twins in city planning to simulate flood 
occurrences in different extreme weather 
scenarios, demonstrating what’s possible 
when advanced technology is embedded into 
infrastructure strategy.

The potential of AI is vast. With the right vision 
and ecosystem collaboration, it can help 
leaders build infrastructure that’s stronger, 
more efficient, more sustainable and future-
ready. Progress comes when infrastructure 
stakeholders—including policymakers, planners, 
operators, investors, technology providers, and 
insurers—move beyond experimentation and 
pilots to help scale AI adoption with confidence.

The timing is right. Ecosystems are evolving. 
Solutions are maturing. The value proposition is 
clear. AI can be both a tool for innovation and a 
strategic enabler of resilience.

Explore the insights, draw inspiration from the 
examples, and consider how your organization 
can take the next step forward.

Foreword

Jennifer Steinmann
Deloitte Global Sustainability Business leader

Costi Perricos
Deloitte Global GenAI Business leader
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Executive summary
Infrastructure is fundamental to modern society. It can shape how we live, work and 
move, enabling the flow of people, goods, and information. From energy and water, 
to healthcare, sanitation, and transportation, infrastructure helps deliver essential 
services that support human well-being and economic resilience. When infrastructure 
thrives, societies can flourish.

To	remain	effective,	infrastructure	should	continually	
evolve. With accelerating population growth and economic 
development,	the	coming	decades	will	likely	demand	a	wave	
of	new	infrastructure—systems	that	are	more	expansive,	
intelligent,	adaptive,	and	sustainable.	But	as	infrastructure	
systems	grow	in	size	and	value,	they	also	become	increasingly	
vulnerable to the changing environments around them.

Natural disasters alone are projected to cause approximately 
US$460 billion in average annual losses to infrastructure globally 
by 2050.1	For	comparison,	natural	disasters	have	resulted	in	
more than US$200 billion of average annual damages globally 
over the last 15 years.2 Natural hazards are expected to become 
more frequent and intense in the future due to the changing 
climate,	significantly	increasing	associated	losses.3

Resilient	infrastructure—so	it	can	absorb	these	shocks,	bounce	
back	quickly,	and	adapt4—is important as continued economic 
and	civil	demands	put	highways,	power	grids,	and	water	
systems under greater stress.5 Making infrastructure resilient 
can	help	protect	lives	and	livelihoods,	keep	cities	running,	and	
enable economic growth despite potential risks.6

The	transformative	power	of	artificial	intelligence	(AI)	has	the	
potential	to	significantly	enhance	infrastructure	resilience.	
Infrastructure resilience unfolds across three stages—planning 
(prevent),	response	(detect	and	react),	and	recovery—and	AI	
can	offer	powerful	tools	at	each	step.	In	the	planning	phase,	
machine learning can help analyze risk data and simulate 
scenarios to identify measures that can be taken for prevention 
and	preparedness	to	improve	flood	resilience7	or	using	fire-
resistant materials.8	During	an	event,	AI-driven	early-warning	

systems	and	real-time	monitoring	help	accelerate	detection,9 
and help guide emergency responses.10	In	the	recovery	phase,	
AI	can	help	accelerate	recovery	by	prioritizing	repairs	through	
predictive damage assessments and optimized resource 
allocation.11	By	weaving	data-driven	insights	into	planning,	
response,	and	recovery,	AI	can	strengthen	traditional	resilience	
measures,	reduce	vulnerabilities,	and	help	infrastructure	adapt	
more	effectively	to	evolving	risks.

Numerous	real-world	applications	help	demonstrate	the	
effectiveness	of	AI-enhanced	resilience	solutions.	Digital	twins,	
for	example,	can	simulate	and	stress-test	infrastructure	designs,	
which	can	lead	to	more	disaster-resilient	assets.	AI-powered	
predictive maintenance can help prevent technical failures 
and	ensure	operational	continuity—for	instance,	applied	to	an	
offshore	wind	turbine,	it	has	the	potential	to	reduce	downtime	
by	15%,	and	increase	annual	revenues	by	up	to	6%,	as	outlined	
in this report.12	AI	can	also	play	an	important	role	in	hazard	
mitigation: systems that monitor forest areas for early signs of 
smoke	can	detect	wildfires	in	their	infancy,	enabling	suppression	
before these risks escalate.13,14	For example,	adapting	California’s	
early	wildfire	detection	system	to	Australia’s	forests	could	
mitigate an estimated US$100 million to US$300 million in 
annual	damages	while	requiring	a	one-time	investment	of	
approximately	US$300 million.14,15	To	support	recovery,	AI	
can	accelerate	post-disaster	damage	assessments,	helping	to	
restore	services	and	reduce	economic	disruption.	For instance,	
Deloitte	Consulting	LLP’s	OptoAI	tool	for	post-disaster	
inspections can more than double roof reconstruction speeds by 
helping	to	identify	repair	needs	after	extreme	weather events.12
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The findings in this report show that integrating AI-powered 
solutions for hazard mitigation and vulnerability reduction 
alone could yield approximately US$70 billion globally in 
annual savings in direct disaster costs by 2050—equivalent 
to 15% of projected average losses, complementing other 
resilience options.16 With improved AI capabilities, these 
savings could exceed US$110 billion annually.16

Despite	this	enormous	potential,	the	path	to	widespread	
implementation	of	AI-enabled	resilience	in	infrastructure	
systems	is	challenging.	Obstacles	include	technological	
limitations,	financial	constraints,	regulatory	uncertainty,	and	
institutional	inertia.	High-quality,	diverse	datasets	contribute	
to	effective	AI	performance,	yet	data	availability	and	accuracy	
remain one of the major concerns.17 Upfront investment 
costs—often	paired	with	uncertain	short-term	returns—can	
further deter adoption.18	On	the	regulatory	and	security	
front,	as	AI-specific	frameworks	continue	to	evolve,	coupled	
with	cybersecurity	and	privacy	concerns,	progress	can	be	
slow,	particularly	in	regions	with	limited	digital	infrastructure,	
notably	low-income	countries.	Additionally,	a	shortage	of	skilled	
professionals and organizational resistance to new technologies 
and ways of working can hinder momentum.19

Realizing	the	potential	of	AI	to	enhance	infrastructure	resilience	
can require coordinated action across the ecosystem— from 
policymakers and infrastructure operators to technology 
companies	and	the	financial	services	and	insurance	industries:

 • Policymakers play a foundational role by helping to shape 
the enabling environment for the widespread adoption 
of	AI.	This	can	include	playing	a	role	in	standard	setting,	
offering	economic	support	schemes,	and	modernizing	legacy	
infrastructure.	Beyond	regulation	and	economic	support,	
governments can also help drive coordination across 
the	infrastructure	value	chain—facilitating	cross-sector	
collaboration	and	long-term	planning.

 • Infrastructure owners and operators,	many	of	whom	are	
public	agencies,	should	look	to	embed	AI	across	the	planning,	
design,	and	operational	phases	to	help	unlock	efficiency	gains	
and	enhance	resilience.	Early	investments	in	high-impact	pilot	
projects	can	generate	proof	points,	economies	of	scale,	and	
a cycle of continuous learning. Modernizing systems to be 
AI-ready,	particularly	through	adaptable	and	expandable	IT	
frameworks	and	interoperability	standards,	is	important.

 • Financial institutions are key in overcoming the funding 
gap	that	AI	solutions	often	face.	Through	innovative	financing	
tools—such as resilience bonds or targeted credit lines that 
include	AI—they	can	help	support	long-term	projects	with	
delayed	returns.	These	institutions	can	also	apply	AI	internally	
to	help	enhance	risk	assessment	and	investment	processes,	

including	credit	underwriting	and	asset	evaluations.	As	co-
investors	in	public-private	partnerships,	they	can	help	amplify	
the impact of resilience strategies alongside governments.

 • Insurers have the opportunity to evolve alongside 
infrastructure	systems	by	embedding	AI	into	their	services.	
This	includes	developing	new	products	tailored	to	AI-enabled	
assets,	offering	premium	reductions	for	systems	that	help	
integrate	trusted	AI	solutions,	and	improving	risk	models	
through	advanced	analytics.	In	doing	so,	insurers	can	help	
incentivize	the	adoption	of	AI	for	resilience	while	better	
managing their own exposure to risks associated with 
natural hazards.

 • Technology companies are the innovation engine helping to 
power	AI	development.	Their	role	extends	beyond	software	
and algorithms to include integrated solutions that help 
combine	AI	with	complementary	technologies	such	as	the	
Internet	of	Things	(IoT)	and	digital	twins.	Demonstrating	the	
measurable impact of these solutions on resilience outcomes 
is	important.	Equally	important	is	helping	to	ensure	that	digital	
innovation	aligns	with	operational	goals,	including	managing	
energy consumption through alternative energy sources. 

 • Architecture and engineering firms play a key role in 
embedding	AI	tools	into	the	planning	and	design	phases	
of infrastructure systems early to help enhance their 
resilience.	By integrating	tools	such	as	digital	twins	during	
planning	and	helping	to	ensure	compatibility	with	real-time	
monitoring	systems	and	predictive	analytics,	they	can	help	
create	smarter,	more	resilient	infrastructure.	Their	close	
collaboration with technology and service providers can help 
ensure	that	emerging	innovations	translate	into	scalable,	real-
world solutions.

Coordinated and decisive action across 
stakeholders is important to help build 
infrastructure systems, that are prepared 
for the challenges of a changing world. 
By forging an ecosystem that is resilient 
to disruption and reinforced with AI 
across the phases of resilience—planning 
(prevent), response (detect and react), 
and recovery—a safer, smarter and more 
resilient future awaits.
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1. Introduction
Infrastructure comprises the assets and networks that help 
deliver the essential services supporting modern life—from 
water,	food,	and	energy	to	health	care,	education,	and	
communications.20 These assets include physical systems 
such	as	energy	generation	and	distribution,	roads,	railways,	
bridges,	ports,	airports,	water	treatment	and	supply,	
and	waste	management,	as	well	as	the	digital	platforms	
that	control,	monitor,	and	optimize	their	operation.21,22 
In many	economies,	infrastructure	investment	makes	up	a	
substantial	share	of	GDP—for	example,	over	six	percent	in	
China	in	2020—and	its	value	continues	to	grow.23

Recognizing the role of infrastructure systems in 
underpinning	economic	growth	is	important,	especially	
when confronted with disasters. Such events can 
profoundly	disrupt	systems,	which	can	result	in	economic	
consequences. The complex interconnections between 
infrastructure and the broader economy reveal how 
indirect	effects—such	as	supply	chain	interruptions,	
service	disruptions,	and	community	displacements—can	
decelerate	economic	activity.	Furthermore,	the	long-term	
impacts	on	productivity,	access	to	education,	and	health	
emphasize the necessity for resilient infrastructure to help 
alleviate these challenges.

Infrastructure systems are subject to disaster risks that can 
entail both physical damage costs and service disruptions. 
Risk to infrastructure emerges from the interaction of 
three dimensions22—hazard,	exposure,	and	vulnerability	
(Figure 1)—which	together	help	determine	the	risk	of	
damage when a disruptive event occurs. Hazards are the 
potentially	damaging	physical	events	themselves—storms,	
floods,	heatwaves,	or	earthquakes—whose	frequency	

and	intensity	are	increasing.	Exposure	refers	to	the	
presence	and	value	of	assets	within	a	hazard	zone,	from	
power stations and pipelines to digital control networks. 
Exposure	can	increase	as	societies	invest	more	heavily	in	
infrastructure. Vulnerability describes how susceptible 
those assets can be to harm—driven by factors like 
design	standards,	material	types,	maintenance	regimes	
and system interdependencies. By analyzing how a given 
hazard	interacts	with	exposed,	vulnerable	infrastructure,	
decision-makers	can	help	quantify	risk	and	prioritize	
investments	that	can	reduce	exposure	(for	example,	by	
relocating	assets),	strengthen	design	and	maintenance	to	
lower	vulnerability,	and	build	adaptive	capacity—	helping	
to ensure that new and existing systems remain resilient in 
the face of evolving risks.

Engineers	and	planners	can	embed	resilience	in	
infrastructure by designing and managing systems to 
help	withstand	shocks—absorbing	impacts,	responding	
swiftly	during	an	event,	and	adapting	afterward	to	help	
restore service with minimal disruption. This can bring 
significant	economic	benefits.	The	benefit-to-cost	ratio	
(BCR)	estimates	for	investments	in	resilience	exceed	three,	
and in some cases can even reach as high as 50.24 This 
means	for	US$1	invested	in	a	resilience	solution,	US$3	
to US$50 worth of damages and losses can be avoided. 
According	to	the	National	Institute	of	Building	Sciences,	
each dollar invested in resilience saves between US$4 and 
US$11 in disaster response and recovery costs.25	Locating	
infrastructure	in	places	less	likely	to	experience	hazards,	
and reducing its vulnerability to hazards through better 
design	or	building	redundant	systems,	can	help	develop	
infrastructure resilience.
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Figure 1. Understanding infrastructure risks for disaster management

Source:	Deloitte	Global	based	on	the	assessments	carried	by	CDRI,22	United	Nations,26	and	IPCC.27

Exposure
Refers to the presence and value of people, infrastructure or 
economic activities in areas that could be affected by a 
hazard. It quantifies what is at risk when a hazard occurs, 
including the physical location and characteristics.

Hazards
The potential occurrence of an event that can cause damage. 
It is characterized by its probability (how likely it is to happen) 
and intensity (how strong or severe it is), as in the case of 
earthquakes, tropical cyclones, etc.

Vulnerability
Refers to the tendency of exposed people, assets, or systems 
to suffer harm or loss when affected by a hazard.

Risk
components

In its broader definition as a branch of computer science that 
enables machines to perform tasks requiring human intelligence,28 
AI is transforming our societies. It is also revolutionizing industries 
such as healthcare, transportation, manufacturing, and retail, by 
optimizing supply chains and providing predictive diagnostics, 
real-time decision-making, personalized recommendations, and 
different types of automation.29 Beyond these transformations, 
AI is positioned to help strengthen infrastructure resilience: it can 
help predict equipment degradation and schedule maintenance 
before failures occur,30 use high-resolution weather and sensor 
data to forecast floods or heatwaves days in advance,31 and 
deploy computer-vision drones to inspect bridges and pipelines 
after an event.32 By layering these capabilities atop traditional 
resilience measures—such as hazard-based land-use planning, 
robust engineering standards, and emergency response 
drills33—organizations can gain earlier warning, more precise risk 
assessments, and automated decision support that together help 
reduce downtime, limit damage, and accelerate recovery.

While AI has demonstrated its value in optimizing operations,34 and 
strengthening industrial systems,29 there is still a lack of focused, 
concise assessment of its role in infrastructure resilience—
especially as asset exposure and frequency and intensity of 
extreme weather events grow. This report aims to help fill this gap 
by first, identifying the risks threatening the infrastructure and 
potential damages, and second, assessing the key applications of 
AI to help enhance the resilience of infrastructure and the resultant 
economic benefits.

Using a data-driven, model-based approach, this analysis estimates 
both the current and future value of infrastructure systems, as 
well as the average losses caused by major natural disasters. 
Using examples and case studies based on empirical findings 
and modeled applications, AI’s resilience improvement potential 
is assessed and calculated. The findings are then compiled and 
interpreted from a decision-maker lens, to identify not only the 
answer to the question “what”, but also to “how” to harness AI to 
enhance infrastructure resilience.

AI for infrastructure resilience  | 1. Introduction
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Infrastructure serves as a backbone of communities and society. Deloitte Global’s analysis shows the 
economic value of infrastructure could reach US$390 trillion by 2050, an 85% increase compared to 
2022, while the annual average losses to infrastructure caused by natural hazards could more than 
double by 2050, reaching approximately US$460 billion. Resilience can create impact in each of its 
implementation phases against a hazard—planning and prevention, detection and response as it 
happens, and recovery afterwards—becoming increasingly important to help minimize these losses.35

Infrastructure refers to the fundamental facilities and systems 
serving a country, city, or other area, including the services and 
facilities necessary for its economy to function.36 Infrastructure can 
be divided into two main categories: physical infrastructure and 
digital infrastructure.

Physical infrastructure encompasses the built environment, 
serving communities: transportation infrastructure, utilities, 
telecommunications, and social (administrative and public) 

service buildings, including schools, hospitals, social housing, and 
public safety infrastructure.37 Digital infrastructure refers to the 
digital side of physical and social infrastructure, supporting and 
enhancing its functionality. It includes information technologies, 
cloud platforms, software, etc.38 (Figure 2).

Physical and digital infrastructure systems are among some of the 
key investments that help support economic growth and social 
development.6

Figure 2. Physical and digital infrastructure systems

Source: Deloitte Global analysis based on The World Bank37,38,39
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2.1. Growing infrastructure 
exposure

Infrastructure development is an important pillar for the global 
economy. Every year countries spend between 0.2% and 6% of 
their GDP in transportation infrastructure development alone, 
representing more than US$200 billion of annual investments.40,41 
Infrastructure investments are expected to reach trillions of 
dollars in the coming decades to help support future economic 
development and population growth.42 The total estimated 
infrastructure value for 2050 is expected to grow by approximately 
85%, from more than US$200 trillion in 2022 to approximately 
US$390 trillion in 2050, driven by these investments (Figure 3).

2.2. Risks impacting 
infrastructure systems

Infrastructure systems can be subject to a wide range of risks 
that can be caused by different types of hazards and incidents, 
including natural disasters, technical failures, cyber threats, 
and social instability (Figure 4). Acute natural shocks such as 

earthquakes, floods, and hurricanes can cause sudden, severe, 
and extensive damage to infrastructure.43 Chronic stresses 
amplify the frequency and severity of extreme events, intensifying 
natural hazards.44 Concerns related to the health and state of 
physical assets, such as corrosion, aging components, or material 
degradation, can gradually undermine performance, causing 
technical incidents and failures. As infrastructure systems become 
increasingly digital, intelligent, and data-heavy, cyberattacks 
represent a growing risk, with the potential to disrupt operations 
and compromise safety.45 Finally, war/conflicts, geopolitical 
tensions, and social movements can also impact infrastructure 
systems and cause damages. For instance, the latest report of the 
Rapid Damage and Needs Assessment (RDNA4) commissioned by 
the Ukrainian Government, the World Bank Group, the European 
Commission, and the UN found that that the Russia-Ukraine 
war caused more than US$520 billion of damages by the end 
of December 2024, primarily in housing, transport, and energy 
infrastructure.46

As different types of infrastructure and economic sectors become 
more interconnected, the potential impact of risks across multiple 
domains becomes more severe.47 A disruption in one sector can 
quickly cascade into others, such as power outages affecting 
communications, or water supply interruptions hindering energy 
production. These cross-sector interdependencies can complicate 
planning and response to crises, especially as threats grow in scale 
and frequency, from cyberattacks to extreme weather events.

Figure 3. Infrastructure and its economic value

Source:	Deloitte	Global	analysis	based	on	CDRI22	for	historical	values	and	the	methodology	described	in	Appendix	1	for	future	projections	using	population	
growth data from the World Bank estimations48	and	economic	growth	from	the	Economist	Intelligence	Unit	projections.49

Notes:		1.	Other	types	of	infrastructure	(health,	education,	buildings)	are	not	considered	in	this	modeling	exercise. 
2.	The	uncertainty	bar	represents	the	uncertainty	on	the	linear	regression.	See	Appendix	1	for	more	information.
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Figure 4. Risks threatening the infrastructure systems

Source:	Deloitte	Global	analysis	based	on	EIB,50	CDRI,22	CISC,51	Lam,52	Leal	Fiho	et	al.,53	International	Decade	for	Natural	Disaster	Reduction,54	IMF,55	CISA.56
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and inequalities
 • Can	strain	public	
services	(healthcare,	
emergency	services)
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Industrial accidents of 
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water

 • Cause	crop	loss	and	
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Disruption of automated 
processes:
 • Lead	to	inability	to	
monitor	soil,	weather,	
or livestock health 
sensors,	reducing	
efficiency	of	operations
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conflicts:
 • Damage	rural	areas,	
forests and natural 
ecosystems
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Wildfires,	storms,	floods	
and earthquakes:
 • Destroy	equipment,	
damage towers and 
snap cables

Temperature trends:
 • Overheat	network	
equipment,	causing	
degradation

Mechanical	failures,	
software	bugs,	hardware	
malfunction:
 • Lead	to	network	
outages,	data	loss,	or	
degraded performance

 • Entail	downtime

Cyber	or	physical	attacks	
to telecommunication 
systems
 • Cause	service	outages
 • Delay administrative 
processes

High population density
 • Increase network 
congestion and 
overwhelm local 
systems
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Among natural disasters, acute shocks such as earthquakes, 
hurricanes, and tsunamis can strike suddenly, causing widespread 
physical damage to important systems. Chronic stresses can 
evolve over longer timeframes and can cause equally severe 
damage to infrastructure systems,53 requiring sustained adaptation 
and retrofitting efforts. Concerning technical hazards, risks may 
arise from a range of causes, including human error, design flaws, 
aging infrastructure, inadequate maintenance, software bugs, and 
mechanical breakdowns. Since the beginning of this millennium, 
cyberthreats are increasingly sophisticated and harmful, and as 
infrastructure systems become more digitized and interconnected, 
their vulnerability to these attacks also grows. These events can 
challenge infrastructure resilience due to their scale and speed, 
and can lead to economic losses and poor performance due to 
breakdown, destruction, or malfunction.

As seen in Figure 4, natural disasters are not the only forces 
threatening infrastructure systems. Technical failures can also cause 
property damage, where equipment malfunction or failure can lead 
to asset destruction, production downtime resulting from halted 
operations, and the associated costs of repair or replacement. 
In this context, the main economic impact often stems from 
business interruption rather than the direct physical damage costs. 
In industrial sectors, downtime alone can reduce annual revenues 
by up to 11%.57 This underscores the importance of technical 

reliability and timely maintenance in infrastructure systems. 
However, when focusing solely on the infrastructure itself, natural 
disasters can represent much greater risks than technical failures.58 
The relative damage caused by cyberattacks, mainly from disruption 
of operations and downtime, is much less than natural disasters.59 
As such, the modeling focus in this analysis remains on natural 
hazards (both acute shocks and chronic stresses), which represent 
the bulk of the direct economic risks to infrastructure systems.

Over the past four decades, natural disasters have become both 
more frequent and more intense (Figure 5). Rapid urbanization, 
denser asset concentrations, and broader economic development 
have expanded infrastructure’s footprint—and with it, its 
exposure to storm surges, floods, wildfires, and other events.60 
As infrastructure systems expand in size and complexity, their 
exposure also increases based on several factors, which may 
include geography, age, and quality of infrastructure. At the same 
time, hazards are intensifying: cyclones are growing stronger, 
heatwaves are lasting longer, and flood events are becoming 
deeper and more widespread, while chronic stressors like 
observed sea-level trends and shifting precipitation patterns 
steadily impact system performance. The Intergovernmental Panel 
on Climate Change (IPCC) report warns that these trends will only 
accelerate, putting ever-greater pressure on the resilience of both 
existing networks and new infrastructure yet to be built.3

Figure 5. Historical losses due to natural disasters (including acute shocks and chronic stresses)

Source:	Deloitte	Global	analysis	based	on	CRED2
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Among the losses incurred in the last 10 years, only about 
25% were insured. For lower middle-income and low-income 
economies, the figure is starker, with less than 5% of total damages 
insured in the last 10 years.2 This is a concern because uninsured 
losses tend to place a much heavier financial burden on individuals, 
businesses, and governments, slowing recovery and development 
efforts as they materialize as direct costs, driving macroeconomic 
impact.61 Moreover, uninsured losses are growing much faster than 
insured losses, especially in low- and middle-income countries, 
where a small proportion of infrastructure assets are covered 
by insurance.62

Figure 6. The evolution of average damages caused by 
natural hazards by type (including acute shocks 
and chronic stresses)63

Source:	Deloitte	Global	analysis	based	on	IPCC3	and	CRED2

Notes:
1.  These values correspond to the direct economic impact of hazards on 
infrastructure,	and	excludes	externalities	and	indirect	impacts,	which	can	
represent	several	times	the	direct	physical	costs	(Box 1).

2.  Uncertainty range corresponds to the annual variability of hazards 
concerning	the	historical	variability,	and	corresponds	to	a	50%	probability	
that total annual damages fall within this range for future projections.

3.		Average	Annual	Loss	(AAL)	represents	the	expected	economic	loss	per	
year	due	to	specific	hazards	based	on	probabilistic	modeling.	This	metric	
provides	a	long-term	average	of	potential	damages	rather	than	implying	
the exact annual damage level.
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By 2050, average annual losses from natural hazards are projected 
to rise to approximately US$460 billion—and they could even 
exceed US$500 billion (Figure 6). That marks an increase of 
approximately US$260 billion compared to the past 15-year 
average. Nearly two-thirds of this jump (63%) stems from greater 
economic exposure—that is, more and higher-value assets placed 
in harm’s way—while the remaining 37% reflects the intensifying 
frequency and severity of hazards.

According to Figure 6, storms—including tropical cyclones, 
tornados, thunderstorms, hailstorms, and blizzards—drive the 
largest share of infrastructure losses, due to their high frequency, 
wide geographic reach, and increasing intensity. Though extreme 
temperatures and wildfires currently account for a smaller portion 
of total losses, both are projected to rise by 2050, as observed 
temperature trends continue. By contrast, geophysical hazards 
such as earthquakes are not projected to change in frequency 
or intensity; any rise in their economic losses stems largely from 
higher infrastructure asset values that are exposed to hazards 
in vulnerable areas. It is important to note that these numbers 
represent a potential average in the modeled year and can vary 
greatly from one year to another. In any given year, the actual 
values may be significantly higher or lower depending on specific 
events or unforeseen circumstances.

By 2050, average annual 
losses from natural hazards 
are projected to rise to 
approximately US$460 billion. 
These losses are more than 
double the annual average 
compared to the last 15 years.

AI for infrastructure resilience  | 2. Investing in stability: Why infrastructure resilience matters

13



Box 1. The downstream impacts of natural disasters

A	well-functioning	infrastructure	system	is	important	for	
maintaining economic stability. When disasters impact 
these	systems,	the	consequences	often	ripple	through	the	
economy causing further indirect damages.64 The scale of 
the loss is closely tied to the degree of interdependence 
between	the	affected	infrastructure	system	and	the	broader	
economy. Indirect impacts can have wider and extended 
consequences,	such	as	disruptions	to	supply	chains,	lower	
productivity	due	to	service	outages,	economic	slowdowns	
from	displaced	communities	or	damaged	businesses,	and	
longer-term	social	and	economic	effects	on	education	or	
health.65	Indirect	impacts	can	also	cause	long-term	health	
and	social	problems,	such	as	respiratory	issues	from	wildfire	
smoke.66	Businesses	are	often	required	to	shut	down,	which	
can	result	in	lost	productivity,	unemployment,	and	declining	
regional GDP. Transportation networks may be severely 
damaged	or	closed,	which	can	impede	the	movement	of	
goods	and	workforce,	potentially	leading	to	shortages	and	
increased prices of essential goods.

According	to	the	Minderoo	Foundation’s	Fire and Flood 
Resilience Blueprint,	between	2000	and	2020,	natural	hazards	
caused 350 deaths and millions of hectares of forest burned. 
In	economic	terms,	they	resulted	in	more	than	AU$25	billion	
in	direct	damage	(US$15.9	billion),	but	the	total	economic	
costs	reached	over	AU$100	billion	(US$63.6	billion).67 
Similarly,	California’s	2018	wildfire	season	caused	economic	
damages	of	US$148.5	billion	with	US$27.7	billion	in	monetary	
losses,	US$32.2	billion	in	health	costs,	and	US$88.6	billion	
in indirect losses.68 These two examples help underscore 
the	vast	scope	of	total	societal	impact,	including	both	
unquantifiable	and	indirect	cascading	effects.

This	report’s	focus	is	limited	to	the	direct	impacts	of	natural	
hazards	on	infrastructure	as	immediate	physical	damage,	
excluding	externalities	such	as	degradation	in	health,	
biodiversity	loss,	and	so	forth.

2.3. Incorporating resilience 
into infrastructure

As the world continues to experience hazardous events such as 
the 2025 wildfires in Southern California and 2024 floods in Spain’s 
Valencia, infrastructure resilience has gained significant attention 
in recent years.5 Resilience refers to the ability of a system to help 
anticipate, absorb, adapt to, and recover from disruptive events.4 
Key themes of resilience can encompass adaptation, which refers 
to modifying structures to help withstand future risks; absorption 
as the ability to withstand shocks without complete failure; and 
recovery, restoring functionality efficiently.69 These processes 
unfold across three timeframes: planning before the hazard or 
incident (prevent), response during the event (detect and react), 
and recovery after the event, which together help shape a system’s 
capacity to endure and bounce back from hazardous events and 
incidents (Figure 7).70,71

Conventionally, resilience in infrastructure has been achieved 
through robust engineering design,33 regular maintenance, and 
the use of resistant materials.62,72 Strategies such as redundancy 
(e.g., backup systems), decentralization of critical services, risk 
assessments, and pre-disaster planning73 have been key to 
preparing for disruptions like natural disasters, system failures, or 
cyberattacks. Regular maintenance and manual response protocols 

can play a vital role in helping to ensure that systems can recover or 
continue operating under stress. These conventional methods, while 
effective, rely on pre-defined problems and fixed responses, when 
designing for resilience requires a holistic approach.74 In the context 
of rapidly evolving threats,75 using today’s technologies to envisage 
tomorrow’s potential threats can lead to significant resilience gains.76

Integrating resilience into infrastructure systems involves a 
comprehensive approach spanning three critical phases: 1) planning 
and prevention; 2) response through detection and reaction during 
a hazard; and 3) recovery afterwards, leading not only to a return to 
normal operations but also to enhanced system resilience, helping to 
ensure that future disruptions are less severe or can be mitigated.77,78

2.3.1. Plan: the prevention phase

Long-term planning is important for resilience. This phase involves 
identifying potential risks and vulnerabilities and implementing 
strategies to help mitigate them. For instance, urban planners 
and policymakers can design infrastructure to withstand natural 
disasters, such as earthquakes and floods, by adhering to building 
codes and investing in high-quality materials.79 Additionally, 
communities can be educated on disaster preparedness, and 
emergency response plans can be developed and regularly 
updated. These proactive measures can help to minimize 
infrastructure damage and ensure that systems remain functional 
even under stress.80
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Figure 7. Performance curve of infrastructure resilience

Source:	Deloitte	Global	analysis	based	on	United	Nations	Office	for	Disaster	Risk	Reduction’s	resilience	definition69
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2.3.2. Respond: detection and reaction during 
the hazardous event

During a hazardous event, the ability to detect and react swiftly is 
important. Advanced monitoring systems, such as early warning 
systems for natural disasters, can play a central role in this phase.81 
Real-time observation, data collection, and analysis help enable 
quick decision-making, allowing authorities to deploy resources 
effectively and evacuate affected areas promptly. For example, 
weather radar systems can track the path of a storm, providing 
valuable information and greater time for preparations.82 Timely 
detection can also enable timely reaction, eliminating or minimizing 
infrastructure damage. For instance, real-time surveillance of 
forests with IoT sensors and satellites can help detect wildfires 
early enough to suppress them before they are uncontrollable 
(Box 5).83 Such immediate responses help limit the extent of 
infrastructure damage and protect lives.

2.3.3. Recover: after the incident

The recovery phase focuses on helping to minimize economic 
disruption and related losses. Post-event, the priority is to help 
restore essential services quickly. This includes repairing damaged 
roads, bridges, and other physical assets, as well as providing 
support to affected businesses and communities. Financial aid and 
insurance payouts can assist in this phase, helping individuals and 
businesses to rebuild and resume operations. Effective recovery 
helps ensure that the economic impact of the event is mitigated, 
allowing the community to return to normal quickly.84,85

Recovery after the incident does not end here. A second but even 
more critical step of this third phase is to strengthen infrastructure 
systems against future hazards. This forward-looking approach 
focuses on reducing vulnerability and increasing adaptability, 
aiming to help minimize or avoid future disruptions.2
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3. Leveraging 
AI for 
infrastructure 
resilience
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Implementation of AI solutions for broad planning and timely response through real-time hazard 
detection and reaction can help complement conventional approaches to resilience. This can help 
reduce the vulnerability of infrastructure systems, reducing the average losses caused by hazards 
by approximately US$70 billion per year in 205016 equivalent to approximately 15% of annual direct 
damage costs estimated (Figure 10).

AI (Box 2) offers significant opportunities to help enhance efficiency 
and optimize processes.86,87 Its transformative potential can also 
bolster resilience to different types of disasters, complementing 
conventional resilience options.88,89 AI can play an important role 

in anticipating failures, minimizing disruptions, and accelerating 
recovery. However, realizing its full potential requires a clear 
understanding of where it adds value and how to measure its 
effectiveness.90

Box 2. What is Artificial Intelligence?

Defining	AI	is	a	challenging	task.	The	Organisation	
for	Economic	Co-operation	and	Development	(OECD)	
defines	it	as	“a	transformative	technology	capable	of	
tasks	that	typically	require	human-like	intelligence,	such	
as	understanding	language,	recognizing	patterns,	and	
making decisions.”91 The following key characteristics of 
AI	distinguish	it	from	a	non-AI	system:	learning	from	data	
and	adapting	over	time,	generalization	and	handling	new	
scenarios,	and	implicit	programming	(see	figure	below).	
Machine	learning	(ML)	and	deep	learning,	including	neural	

networks,	are	different	AI	modeling	techniques	that	can	be	
used	for	regression,	clustering,	or	Generative	AI.92,93

The	distinction	between	AI	and	non-AI	based	methods	
is	becoming	more	fluid	as	non-AI	systems	such	as	digital	
twins94 or IoT95	devices	are	progressively	integrating	AI	
features for enhanced performance. For the sake of this 
analysis,	such	technologies	are	considered	to	be	AI	systems	
as	the	exact	distinction	between	AI	and	non-AI	is	not	at	the	
core of the topic.

Follows predefined, 
unchanging 
instructions

Limited to solving 
specific problems

Explicit step-by-step 
programming

Learn from data, 
adapt behavior 
over time

Ability to generalize 
and handle unforeseen 
scenarios

Implicit programming, 
designed to learn 
from data

Non-AI AI

Source: Deloitte Global analysis
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3.1. Measuring the 
effectiveness of AI 
for infrastructure 
resilience

The effectiveness of AI solutions in enhancing infrastructure 
resilience can be evaluated across four key dimensions: economic, 
technological and performance, environmental, and social impacts 
(Figure 8). Assessment of the impact of AI requires defining metrics 
and providing a framework for determining whether AI helps 
enhance infrastructure resilience in a cost-effective and efficient 
manner. These metrics can then enable decision-makers to track 
progress, compare alternatives, justify investments, and identify 
areas for improvement.

The economic impact of AI in infrastructure resilience can be 
quantified in financial gains such as cost savings from optimized 
operations, reduced asset damage, and the avoidance of repairs 
or replacements. AI also helps enhance return on investment 
(ROI) by enabling more strategic allocation of resources and 

Source: Deloitte Global analysis

Figure 8. Metrics to measure the effectiveness of AI solutions

Economic impact
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efficiency
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Change	in	number	 
and types of jobs

AI	score	perception

Reduction in incident/ 
accident rates

Number of  
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improving overall budget efficiency in infrastructure planning, 
maintenance, and emergency response. The total cost associated 
with AI deployment depends on the complexity of the analysis, 
the performance requirements of the system, and the use 
of generative AI.96 While the cost of basic AI solutions such as 
chatbots can range between US$20,000 and US$80,000, advanced 
custom solutions such as predictive maintenance systems can cost 
over US$500,000.97

Technological and performance metrics provide clarity on how the 
reliability, efficiency, and responsiveness of infrastructure systems 
can be measured. Key aspects include reduced downtime, fewer 
failures, faster recovery times, and better operational decision-
making through real-time data analysis. AI-powered early warning 
systems can analyze seismic patterns and enhance earthquake 
forecasts. The implementation of such a system in California has 
shown more than 90% accuracy in the detection of the maximal 
magnitude of seismic activities 30 days in advance, outperforming 
logistic regression models with 32% accuracy.98 This helps enable 
timely interventions to maximize the effectiveness of emergency 
response and minimize losses.99

AI can help optimize resource use and monitor and reduce 
the environmental footprint of infrastructure operations. This 
includes lower energy and water consumption, reduced waste, 
and decreased emissions through smarter system planning and 
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renewable integration. However, the environmental benefits 
should be weighed against the energy demand of AI itself, which 
can cause further environmental burden. As a previous Deloitte 
Global analysis, Powering Artificial Intelligence, has shown, energy 
demand for data centers and machine learning computation 
equipment could reach as high as 1,000 TWh in 2030 and almost 
2,000 TWh in 2050.100

Finally, the social dimension of AI consists of the number of jobs 
created in the development, deployment, and maintenance of AI 
systems, as well as changes in workplace accident rates before 
and after AI implementation. AI adoption will likely impact skill 
requirements; therefore, it should be carefully managed.

3.2. Potential economic 
benefits of AI-powered 
resilient infrastructure

The benefits of AI-enabled resilient infrastructure and the ability to 
help mitigate potential damage can be assessed across four factors 
to help evaluate the relative opportunities for economic impact: 
phase, type of hazard, magnitude of potential losses by hazard, 
and potential effectiveness of AI to mitigate risks.

All three phases of infrastructure resilience can benefit from 
being AI-enabled, with the first two phases—planning to reduce 
vulnerability (prevention) and responding to mitigate hazards 
(detection and reaction)—having immediate direct economic 
impact. The planning phase to reduce vulnerability consists of 
integrating resilience across each stage of infrastructure operation: 
in the design to create a more resilient infrastructure, notably 
by using digital twins (Box 3), as well as during operation, using 
tools such as predictive maintenance systems (Box 4). Most of the 
potential benefits reside in the planning and prevention phase, as 
AI can make disaster-resilient infrastructure design more efficient. 

The response phase aimed at mitigating hazards includes early 
warning systems to help allow for better preparedness, which can 
reduce overall damages and potentially save lives. For example, AI 
can help to efficiently detect and suppress wildfires (Box 5). AI can 
also help mitigate the damage caused by floods with AI-enhanced 
flood forecasts, real-time flood mapping, and smart operations of 
flood-management systems (Figure 9).

The savings of AI-enabled resilience depends on two key factors: 
the magnitude of the damage caused by hazard type and AI’s 
effectiveness potential for each hazard. For instance, losses 
caused by storms are estimated to exceed US$250 billion annually 
by 2050, while the estimated damage to infrastructure systems 
by wildfires remains an order of magnitude lower (US$23 billion 
annually). Therefore, although AI can avoid a higher share of 
damage in the face of wildfires, due to its limited overall direct 
economic damage to the infrastructure systems, the absolute 
savings due to AI (approximately US$7 billion) remain smaller than 
those associated with planning for and responding to storms and 
floods (approximately US$30 billion and US$20 billion respectively). 

Most of the potential 
benefits reside in 
the planning and 
prevention phase, as 
AI can make disaster-
resilient infrastructure 
design more efficient.
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Figure 9. Benefits of AI-enabled infrastructure resilience per type of hazard and resilience strategy in 2050

Source:	Deloitte	Global	analysis	based	on	the	methodology	described	in	Appendix	3
Note:	Only	the	six	most	important	hazards	are	investigated	as	they	represent	over	99%	of	average	damage	costs	predicted	in	2050.
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3.3. AI-enabled 
infrastructure 
resilience in action 

There are many examples where AI-enabled infrastructure 
resilience can create positive benefits across the three phases 
of hazards—before, during and after—from resilient design and 
preventive measures by leveraging digital twins and predictive 
maintenance, to reactive measures such as wildfire detection 
and mitigation, as well as optimal recovery measures such as AI-
enabled post-hazard damage assessment.

3.3.1. Reducing vulnerability: robust planning 
and preventive measures

Incorporating resilience into infrastructure design helps reduce 
vulnerability to hazards. Using AI tools in the planning phase, such 
as digital twins (Box 3), can help leverage more robust infrastructure 
design by analyzing, for example, the impacts of potential floods 
on the infrastructure. AI tools can also be leveraged for preventive 
and predictive measures, as in predictive maintenance systems 
(Box 4), which are designed to efficiently anticipate and address 
maintenance needs before incidents or structural failures occur. AI-
based simulations are being used for numerous purposes including 
to help simulate potential cyclones in the US, allowing for better 
awareness and preparedness,101 or for helping city planners in Japan 
identify areas vulnerable to soil liquefaction during an earthquake.102

Box 3. Digital twins for resilient urban planning

Digital twins are virtual replicas of physical systems designed 
to	simulate	the	behavior	of	their	real-world	counterparts.	
They	offer	a	transformative	approach	to	urban	planning	by	
integrating	real-time	data,	AI,	and	simulation	technologies.103 
Digital	twins	are	powerful	tools	that	can	be	used	for	real-
time	infrastructure	monitoring,	predictive	analytics	and	
stress-testing,	therefore	improving	infrastructure	resilience.	
Moreover,	they	are	economically	viable	solutions	with	a	
typical payback period of four to nine years.104 Numerous 
municipalities are using digital twins for resilient urban 
planning,	such	as:

Flood resilience in Lisbon, Portugal:	To	help	increase	flood	
resilience,	the	city	of	Lisbon	used	a	digital	twin	to	simulate	
flood	occurrences	under	current	and	future	scenarios,	
enabling a more holistic assessment of the impacts of 
flood-induced	events.	This	led	to	the	development	of	an	
appropriate	drainage	plan,	which	was	stress-tested	against	
potential	floods	via	simulations.	Its	implementation	could	
help	to	mitigate	up	to	20	floods	over	the	next	century,	which	
can be translated into savings of more than US$100 million in 
damage over this period.105

Smart solid waste management in India: Solid waste 
can become a major sanitary concern if not collected in 
time. Deloitte India developed a digital twin for an Indian 
municipality,	helping	forecast	solid	waste	collection	needs	
and	optimizing	collection	routes.	Leveraging	the	AI-based	
simulation and optimization platform and a better overall 
understanding of the resilience of the waste collection 
service,	this	solution	helped	mitigate	sanitary	risks	by	
helping	to	ensure	quick	collection	of	solid	waste,	resulting	
in more than 20% cost savings on fuel consumption and 

36 tCO2 emission reduction annually by optimizing the waste 
collection route.

Urban extreme weather adaptation in Florida, USA: The 
Broward	Metropolitan	Planning	Organization	(BMPO)	in	the	
Miami	area	is	addressing	risks	from	observed	sea-level	trends	
and	extreme	weather	events,	with	over	35	organizations	
coordinating infrastructure investments and resilience 
efforts.	Facing	challenges	from	siloed	information	and	
limited	analytics,	BMPO	sought	a	unified	scenario	planning	
platform.	Deloitte	Consulting	LLP	is	providing	a	solution	using	
Google	Cloud	Platform,	Google	Earth	Engine,	and	Vertex	
AI,	offering	data	visualization,	analytics,	simulation,	and	
modeling.	This	platform	can	help	policymakers,	planners,	
researchers,	and	community	leaders	collaborate	and	assess	
the	impacts	of	extreme	weather	events,	resilience	measures,	
and infrastructure projects. The need for such platforms is 
common	among	regional	planning	organizations,	highlighting	
the	opportunity	for	these	AI-enabled	solutions	to	help	
enhance	engagement,	geospatial	planning,	and	mission	
insights for state and local agencies.106,107

Urban heat island mitigation in Singapore:	An	urban	
heat	island	(UHI)	is	an	urban	area	that	experiences	higher	
temperatures than the surrounding areas. UHI can reduce 
economic	productivity	and	daytime	work	efficiency	by	
up	to	10%,108 and increase cooling electricity demand109 
and	heat-induced	mortalities.110 To help mitigate the 
UHI	effect,	Singapore	is	developing	a	digital	twin	to	help	
identify potential future UHIs and investigate the impacts 
of	additional	green	spaces,	water	bodies,	or	new	buildings,	
helping Singapore develop appropriate adaptation strategies 
to increasing heat waves.111
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Box 4. Predictive maintenance for enhanced infrastructure reliability

Predictive	maintenance	(PdM)	is	a	maintenance	strategy	
that uses the continuous or periodic monitoring and 
diagnosis of systems and equipment to predict failures. 
AI/ML112-enabled	PdM	identifies	the	how,	why,	and	when	a	
machine	will	fail	before	it	occurs,	reducing	downtime	and	
emergency maintenance as well as increasing capacity and 
productivity.113,114	A	main	component	of	PdM	is	the	ability	to	
integrate	AI	with	data	captured	from	IoT	sensors,	which	help	
provide visibility into the state of the assets. IoT95 sensors 
capture	operational	signals,	such	as	vibration,	temperature,	
ultrasonic,	and	image	data,	which	are	then	used	by	the	AI/
ML	model.115	The	AI/ML	model	continuously	monitors	asset	
health,	forecasting	failures,	and	optimizing	maintenance	
schedules. These systems can help detect subtle signs 
of wear long before they escalate into costly repairs or 
unplanned downtime.

Predictive maintenance of a 10-MW offshore wind 
turbine in the UK
PdM	is	especially	valuable	for	logistically	challenging	assets,	
such	as	offshore	wind	operations,	where	maintenance	is	
not only costly—accounting for 25–30% of total lifecycle 

costs116—but also logistically challenging and potentially 
hazardous.	Offshore	wind	turbines	are	often	far	from	land	
and	difficult	to	access,	making	reactive	repairs	costly,	time-
consuming,	and	risky.	Predictive	maintenance	can	help	
minimize	unplanned	interventions,	reduce	downtime,	and	
significantly	lower	operational	costs	while	helping	to	ensure	
safer and more reliable turbine performance.117

For	a	turbine,	key	parameters	to	monitor	include	
vibration	frequency,	temperature,	and	operational	load.118 
By extracting	these	features,	the	AI/ML	model	can	focus	
on	the	most	important	data,	improving	its	predictive	
accuracy.119	Artificial	Neural	Networks	(ANNs)	and	their	
variants	are	the	most	versatile	AI	techniques	for	wind	
turbine	maintenance,120	as	they	can	be	applied	to	monitoring,	
optimization,	data	prediction,	and	decision-making	tasks.	
The implementation of the PdM system can help reduce 
downtime	(Figure A	below)	and	create	significant	savings	in	
repair	costs	(Figure B).	By	minimizing	unplanned	downtime,	
wind	turbines	can	remain	operational	for	longer	periods,	
which	can	enable	increased	electricity	generation	and,	in	
turn,	higher	revenues	(Figure	C).
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Box 4. Predictive maintenance for enhanced infrastructure reliability (continued)

Adopting	AI	technologies	in	offshore	wind	power	systems	
can	require	upfront	investment,	but	it	can	also	lead	to	
substantial	long-term	savings.	Initial	costs	typically	include	
the	installation	of	additional	sensors—such	as	vibration,	
temperature,	and	acoustic	sensors—on	wind	turbines,	the	
acquisition	or	development	of	AI	software	platforms,	and	

the	training	of	personnel	in	data	science	and	turbine-specific	
analytics.97	These	investments	can	pay	off	over	time:	the	
payback	period	for	implementing	an	AI-driven	predictive	
maintenance	solution	is	approximately	six	years,	after	which	
the	system	begins	to	deliver	net	financial	benefits	(see	
figure below).	

Vegetation management
AI-powered	predictive	maintenance	can	also	be	a	useful	
vegetation	management	tool	by	enabling	proactive	planning,	
monitoring,	and	control	of	plant	growth	around	critical	field	
assets,	such	as	electrical	power	lines.	If	vegetation	growth	
near	power	lines	is	not	checked	and	managed,	it	can	lead	to	
electrical	arcing,	equipment	damage,	wildfires,	and	power	
outages	(the	largest	cause	of	power	outages	in	the	US).121 
Rather	than	relying	on	manual	inspections	by	humans,	which	
can	be	time-consuming,	expensive,	and	prone	to	error,	
AI	systems	can	analyze	satellite	and	field	imagery,	drone	
footage,	and	historical	growth	patterns	to	help	identify	high-
risk areas. This shift from reactive to predictive/preventive 
maintenance	helps	enhance	the	safety,	reliability,	and	
resilience of the grid infrastructure.

A	Deloitte	Consulting	LLP	field-validated	analysis	shows	that	
leveraging	AI-driven	inspections	over	a	50,000	circuit	mile	
span of power lines can help reduce inspection costs as well 
as	reduce	human	errors	in	trimming.	The	AI	models	can	
identify vegetation clearances with a geospatial accuracy 
of	up	to	6	inches	using	Light	Detection	and	Ranging	(LiDAR)	
and/or	15	cm	ortho-photogrammetry,	enabling	up	to	a	40%	
near-term	vegetation	inspection	automation	potential.

AI	models	can	also	help	prioritize	inspections	and	trimming	
based on both the likelihood and potential impact of 
vegetation-related	outages.	This	helps	reduce	unnecessary	
fieldwork	while	minimizing	the	risk	of	missing	important	
trimming needs.

Water supply systems
Predictive maintenance can be a powerful tool for enhancing 
power infrastructure reliability and can also play an 
important role in safeguarding other essential infrastructure 
such	as	water	supply	systems.	AI-powered	PdM	offers	a	
highly	effective	solution	for	cities	dealing	with	aging	water	
supply and sewage infrastructure. Water networks are 
often	decades	old	with	materials	subject	to	deterioration,	
which	can	lead	to	water	losses,	service	disruption	and	costly	
repairs.	To	address	this,	the	municipal	water	supply	and	
sewerage company of Wroclaw collaborated with Deloitte 
Poland	to	help	implement	an	AI-driven	system	analyzing	
pipe	age,	material	type,	environmental	conditions,	and	
other external stress factors such as the proximity to tram 
tracks.122 The solution can help predict potential failures 
with	up	to	90%	accuracy.	Given	budget	constraints	and	an	
extensive	water	supply	network,	AI	can	enable	effective	
planning for modernization and rehabilitation.
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3.3.2. Mitigating hazard: real-time detection 
and reactive measures

AI also plays an increasingly important role in hazard mitigation 
by helping enable faster response, with more accurate detection 
and reaction to disasters and incidents. AI-powered early 
warning systems can process vast amounts of real-time data, 
such as seismic activity, weather patterns, or satellite imagery, 
to help provide timely alerts for events like earthquakes, floods, 
wildfires or hurricanes.123 Although for a large majority of hazards, 
early warning systems provide only limited benefits in terms 

Box 5. Bushfire detection and early action in Australia

AI-powered	early	warning	systems	(EWS)	are	powerful	tools	
for	early	detection	of	potential	hazards,	enabling	timely	
response	to	hazards	such	as	floods	and	wildfires.	According	
to	a	study	by	the	Australian	National	University,	faster	
bushfire	detection	can	help	avoid	direct	losses	of	between	
US$100	million	and	US$300	million	each	year,	depending	on	
the	detection	and	reaction	time	(see	figure	below).15

The cost is estimated based on the implementation of such 
a	system	in	California.	An	EWS	system	with	over	1000	IoT	
sensors	across	the	state	of	California,	including	the	AI	system	
to	detect	potential	fires	in	real-time,	accounted	for	a	total	
investment of approximately US$24 million.126	Assuming	that	
investing	in	a	similar	system	for	covering	Australia’s	forests	
(around	12	times	the	surface	covered	in	California)	would	
cost	proportionally	to	the	surface	area,	this	system	would	
cost	around	US$288	million.	Thus,	investing	in	such	a	system	
for	wildfire	detection	in	Australia	that	can	avoid	between	
US$100	million	and	US$300	million	annually,	can	result	in	a	
payback	period	of	just	a	few	years,	with	the	potential	to	save	
billions	of	dollars	(US$)	in	the	long	term.

Combining	IoT	with	other	technologies,	such	as	real-time	
satellite	imagery	and	analysis	or	wildfire	risk	forecasting,	
could	help	further	improve	early	wildfire	detection	and	
suppression,	reducing	fire-related	damage	even	more	than	
using them alone.127
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of mitigating infrastructure damage, they can allow for better 
preparedness, saving lives and reducing losses to movable assets, 
such as vehicles and personal belongings.124

AI’s use goes beyond timely detection and reaction, also assessing 
the potential spread of a hazard. Wildfire management is an 
example, where AI models are used to help predict fire spread 
dynamics, identify high-risk zones, and guide the strategic 
deployment of firefighting resources. For instance, deep learning 
algorithms have been used to detect wildfire outbreaks from 
satellite data and forecast their progression under various weather 
conditions which can lead to cost avoidance (Box 5).125
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3.3.3. Timely optimal recovery

Improved infrastructure resilience also includes the capacity to 
recover swiftly and effectively following a disaster.128 While quick 
recovery does not reduce direct infrastructure damage, it can 
help restore public services, sustain quality of life, and ensure the 
continuity of economic activity, reducing indirect economic losses. 
AI-driven technologies can support this process by facilitating 
post-disaster damage assessment (Box 6), and helping with 
data-driven decision-making, such as smart resource allocation 
and prioritization.129 AI algorithms can, for instance, help identify 
optimal routes for emergency services in case of damaged or non-
usable roads.10

By improving risk assessment, optimizing operations, and enabling 
data-driven decision-making, AI can help improve infrastructure 
resilience in all three phases of disruptive events: before, during, 
and after a hazard, saving approximately US$70 billion (15%) 
from direct damages by 2050 (Figure 10). The remaining losses 
(approximately US$390 billion) can also be partially avoided using 
other resilience options, notably by earlier planning, better building 
practices, redundancy, decentralization of assets, using durable 
materials, or other mitigation strategies.73,130

Box 6. Post-disaster damage assessment

After	a	disaster,	a	timely	and	accurate	damage	
assessment	is	important	for	effective	emergency	
response and recovery planning. It can enable authorities 
and	rescuers	to	identify	the	most	affected	areas,	allocate	
resources	efficiently,	and	prioritize	rescue	and	rebuilding	
efforts.	Overall,	AI	technologies	can	significantly	
accelerate	decision-making	time	during	critical	moments	
of	post-disaster	damage	assessment.

By reducing the time needed to assess damage and 
identify	priorities,	AI	can	help	recovery	efforts	be	
both	timely	and	efficient.	Real-time	data	from	satellite	
imagery and drones is important to help assess the 
extent	of	damage	with	precision.	AI	models	can	detect	
rare	anomalies	and	structural	defects,	improving	the	
speed	and	accuracy	of	assessments	(see	figure	below).	
Additionally,	by	analyzing	historical	disaster	recovery	
patterns,	AI	can	help	optimize	future	responses,131 making 
infrastructure systems more adaptive and resilient.

Source:	Deloitte’s	OptoAI	tool132	for	post-disaster	damage	assessment

Example of a post-disaster damage detection by AI

The	use	of	Deloitte	Consulting	LLP’s	OptoAI,	an	advanced	
AI	tool	for	post-disaster	inspections,	has	helped	to	
demonstrate the ability to reduce roof repair timelines 
from	up	to	seven	days	to	just	three,	while	cutting	material	
overages	by	15%	to	30%.	The	OptoAI	tool	uses	2D	to	3D	
photogrammetry to create digital twins of damaged areas 
and	helps	train	AI	models	on	both	real	and	synthetic	
data. These models are then deployed on drones to help 
detect	damage	in	near	real-time,	significantly	improving	
disaster response.

Figure 10. Future losses with and without AI

Source: Deloitte Global analysis based on the methodology described in 
Appendices	2	and	3
Note:	Uncertainty	bars	represent	the	natural	variations	of	hazards,	showing	
the	range	of	the	first	and	third	quartile.	The	uncertainty	bar	of	“2050	losses	
with	AI”	also	includes	uncertainties	on	the	benefits	of	AI.
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This analysis shows that the economic value of infrastructure 
could reach US$390 trillion by 2050, an 85% increase compared 
to 2022 (Appendix 1). This anticipated increase in the economic 
value of infrastructure can lead to greater economic exposure to 
risks. In parallel, the amplitude and frequency of natural hazards 
are also increasing. According to these findings, the annual average 
losses to infrastructure systems caused by natural hazards could 
more than double by 2050, reaching approximately US$460 billion 
(Appendix 2). The increased economic value at risk is the primary 
driver, accounting for 63% of the growth in potential losses, with 
the remaining 37% of the increase in losses due to the increasing 
hazard profile.

Resilience can be enabled by several types of solutions: robust 
design and construction mainly by using high-quality and resistant 
materials, regular maintenance, emergency preparedness through 
holistic community resilience, and infrastructure development that 
accounts for natural hazards.133,134 These solutions can help avoid a 
large share of the estimated losses. Many of them can incorporate 
AI solutions for higher efficiency and robustness, such as digital 
twins for robust and smart design, predictive maintenance tools for 
targeted and timely maintenance, and early-warning systems for 
timely reaction to hazards.

Implementation of AI solutions alone for robust planning and 
response through real-time hazard detection and reaction can help 
reduce the vulnerability of infrastructure, decreasing the average 
losses caused by natural hazards by approximately US$70 billion 
per year in 2050, accounting for approximately 15% of annual 
direct damage costs (Figure 11). They complement the conventional 
resilience solutions, that can help mitigate and avoid a proportion 
of the remaining US$390 billion of losses.

4.1. Barriers to the 
implementation of AI

Despite its potential to enhance infrastructure resilience, the 
successful deployment of AI in infrastructure is often hindered 
by technological limitations. A primary concern is data quality 
and the availability of sufficiently large, varying, and accurate 
datasets necessary for effective AI training and decision-making. 
Poor or biased data can lead to unreliable outputs, undermining 
trust in AI systems.135 An AI algorithm is only as good as the data 
source it learns from.17 Moreover, integrating AI into existing 
infrastructure is complex, as many government agencies that 
manage infrastructure rely on legacy systems that were not 
designed to support modern AI technologies. These systems can 
be incompatible with modern technologies, requiring redesigns 
or upgrades. Thus, AI implementation often encounters technical 
obstacles such as interoperability problems.136

AI adoption often faces significant financial hurdles. The high 
upfront cost of developing, testing, and deploying AI solutions 
can be an important obstacle.19,137 In a recent survey about data 
and AI in the UK, a majority of respondents (170 civil servants 
across all major government departments) underscored financial 
burden as the primary roadblock to adopting AI.18 This cost hurdle 
includes not only the cost of technology, but also investments in 
data acquisition, storage, computing power, and skilled personnel. 
Additionally, given that the technology is relatively new, there is 
a more limited track record demonstrating its effectiveness. This 
uncertainty in return on investment can make decision-makers 
hesitant to commit financial resources.

In addition, the regulatory landscape surrounding AI remains in 
flux, which can impact its safe and secure adoption. Coupled with 
limited consistent, AI-specific regulations, concerns over privacy, 
security, and ethics can create mistrust of AI technologies.135 
It is still difficult for AI to provide transparent, auditable 
decision-making. Regulatory frameworks often require detailed 
documentation, while most AI systems cannot clearly articulate or 
justify their actions in a traceable format.138

Lastly, organizational and institutional factors can impact AI 
deployment. One of the most pressing challenges is the lack of 
a skilled workforce with experience in AI.19,139 This talent gap can 
make it difficult to design, implement, and maintain AI systems 
effectively. Additionally, organizational resistance to change, 
ambiguous leadership on AI initiatives, and lack of clear governance 
frameworks can impede adoption and integration of AI.140 These 
challenges are particularly true in environments that lack digital 
maturity or are slow to adopt innovation.

To conclude, a potential user of an AI solution, especially for 
infrastructure resilience applications, may opt not to deploy such 
technology due to a lack of transparency and demonstrated 
track record. This apprehension is rooted in lack of trust in the 
effectiveness of the solution. Without standardized regulations 
and norms, users may find it challenging to gauge the reliability and 
robustness of AI technologies. High upfront costs associated with 
AI technology, data acquisition, and skilled personnel can further 
complicate its adoption.
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Figure 11. Growing risks and the utility of AI to enhance infrastructure resilience

Source:	Deloitte	Global	analysis	based	on	Appendices	1,	2	and	3
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4.2. A way forward
Despite these challenges, the integration of AI into infrastructure 
resilience strategies offers a transformative opportunity to help 
reduce exposure and strengthen systems and assets against the 
increasing frequency and intensity of hazards, reducing overall 
risks and potential losses. Yet, harnessing this potential requires 
coordinated effort across the infrastructure ecosystem involving 
both public and private sectors. In particular, governments, 
infrastructure operators, technology companies, the finance 
ecosystem, and engineering and architecture firms have important 
roles to play.

Policymakers are pivotal to lay the foundations and to create 
an enabling environment for the widespread adoption of AI 
across infrastructure systems through regulatory frameworks, 
economic support schemes, a flexible regulatory environment 
and continuous investments in upgrading and extending legacy 
infrastructure. However, this role goes beyond setting regulations 
and economic incentives, and encompasses coordination among 
the key actors across the value chain of infrastructure systems:

 • Governments can play a role in standard setting, informing 
definitions, and creating the enabling governance architecture 
for AI transparency, accountability, and risk assessment in 
infrastructure projects. AI principles, such as the OECD’s that 
call for AI actors to help promote a general understanding of 
AI systems, including their capabilities, limitations, and the 
nature of human-AI interactions, to enhance transparency and 
accountability, are largely voluntary.141

 • Harmonized approaches for secure, cross-sector, and cross-
border data sharing can help promote collaboration to train robust 
AI models by facilitating secure data sharing. Several countries and 
regions have established regulations that safeguard personal data 
anonymity—for instance, the European Union has introduced the 
General Data Protection Regulation (GDPR) “the toughest privacy 
and security law in the world” in 2016, that has been put into effect 
on May 2018.142 This type of secure and standardized data use and 
sharing could help regional AI cooperation for disaster prediction 
systems that rely on cross-border environmental data (e.g., floods, 
wildfires, or earthquakes), helping to ensure that AI models can be 
trained on diverse datasets.

 • Policies should consider the need for flexibility and adaptability 
as technology and its application is changing, often faster than 
governments can keep up.143 The rapid evolution of AI technology 
can further complicate standardization.144 Flexible AI policy can 
be more sustainable, less risky and can allow for a calibrated 
evolution of AI governance.

 • Economic support mechanisms to help the deployment of AI 
across different infrastructure systems play an important role 
in reducing the financial burden and accelerating technology 

adoption. Some countries have used tax credit schemes to 
support innovation, such as the Dutch Wet Bevordering Speur- 
en Ontwikkelingswerk (WBSO), which can provide tax credits 
for research and development (R&D) efforts.145 The tax credit 
partially compensates R&D-related investments in AI-based 
predictive maintenance, intelligent transport systems, energy 
optimization, or disaster management tools. Economic support 
mechanisms can go beyond R&D to include subsidies for pilot 
projects that help demonstrate the societal and economic 
benefits of AI-enhanced infrastructure.

Infrastructure owners and operators can integrate AI solutions 
into their planning and operational processes to enable the 
benefits of AI-enabled resilience:

 • Based on the findings of this study, integrating AI-powered 
solutions for hazard mitigation and vulnerability reduction could 
generate approximately US$70 billion in annual savings from 
direct disaster costs by 2050, representing approximately 15% 
of estimated average losses. These investments should cover 
the entire infrastructure lifecycle, including upfront planning and 
construction. Hazards occur throughout the infrastructure’s 
operational phase, and AI-embedded detection and reaction can 
help bring significant levels of cost reduction. More significantly, 
as shown in Chapter 3, leveraging AI for robust design and 
construction accounts for about two-thirds of the cost 
reductions, underlining the importance of AI-embedded planning 
and construction.25

 • Infrastructure owners and operators should prioritize 
pinpointing specific AI applications with significant potential for 
positive change rather than embarking on expansive, broad-
based AI projects. Beginning with smaller initiatives helps provide 
opportunities for learning, adjustment, and gradually expanding 
successful efforts, supporting more sustainable and organized 
adoption of AI technologies. 

 • Upgrading legacy infrastructure is important for enabling 
compatibility with modern AI technologies. Those managing 
infrastructure should emphasize developing adaptable and 
expandable IT frameworks that can incorporate AI smoothly, 
facilitating efficient data processing and system interoperability.

 • The cost of deploying advanced AI solutions is decreasing rapidly. 
At the hardware level, costs have declined by 30% annually, while 
energy efficiency has improved by 40% each year.146 Maintaining 
this momentum through strategic investments, pilot projects, 
and scaled adoption can help make AI-enhanced resilience 
solutions increasingly accessible, cost-effective, and reliable. To 
help overcome barriers associated with trust and resistance 
to change, infrastructure owners and operators should raise 
awareness among employees and stakeholders on the utility 
of AI solutions in enhancing their operations. This includes 
awareness campaigns and training programs that can help the 
workforce leverage these solutions in their daily operations.147,148
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 • Finally, to leverage the full potential of what AI can offer, a key 
priority is the sharing of high-quality and high-precision data for 
longer and more effective training of context-specific AI models, 
which could improve the performance of these models.

Within the finance ecosystem, financial institutions and 
commercial and investment banks can help play an important 
role in supporting AI adoption for infrastructure resilience, while 
also using AI to better assess project risk:

 • Financial institutions can act as catalysts for AI-embedded 
resilience deployment by designing and promoting financing tools, 
such as resilience bonds149 or targeted credit lines that include 
AI. While several financial mechanisms can be used to fund 
infrastructure resilience,150 these institutions could prioritize AI-
driven infrastructure projects. Such multi-year projects often face 
financing challenges due to delayed returns, despite their long-
term value in reducing risks and enhancing societal well-being.

 • Financial institutions can also integrate AI into their own decision-
making processes to help improve risk analysis in areas such as 
credit underwriting and asset evaluation.151

 • These institutions can co-invest in AI-powered resilience 
solutions through public-private partnerships, together 
with governments, technology providers, and multilateral 
organizations to help fund and reduce investment risks in 
cutting-edge AI infrastructure. Recent announcements such as 
the EU’s AI investment agenda152 demonstrate how strategic 
financing can help strengthen AI ecosystems.

Insurance providers, within the financial services sector, are 
particularly well-placed to help integrate AI into their operations 
and make it a core component of their business, both to 
enhance their services, and to extend them to the new needs of 
infrastructure systems. This is driven by AI adoption and increasing 
losses due to the increasing value of infrastructure and extreme 
weather events:

 • AI-powered resilience solutions can involve trust in the 
effectiveness of the solution. Insuring AI solutions is a key enabler 
to help build trust in their value. In collaboration with technology 
providers, insurers can develop insurance products for new 
AI solutions that have limited commercial track record but can 
enhance resilience.153

 • The growing use of AI systems can include new vulnerabilities. 
AI usage and larger data centers bring the need for extension 
of insurance to new AI systems, as well as potential AI-related 
liabilities (self-driving cars, AI-powered manufacturing plant 
malfunctions, etc.).153 By developing new insurance products, 
insurers can help support both infrastructure owners and 
developers with adoption and technology providers with further 
development of AI solutions.

 • Insurers can also play an important role in incentivizing 
adoption of AI solutions for infrastructure resilience. This would 
require insurers to assess the risk-reduction potential of AI for 
infrastructure and reflect these improvements in their pricing 
models. By offering preferential terms, insurers can promote the 
adoption of resilient technologies in infrastructure projects.154 
This can enable them to encourage AI adoption through price 
signals with lower rates.

 • Furthermore, insurance providers can integrate AI into their 
risk assessment processes to help enhance the accuracy of 
their pricing and damage estimations. AI can provide benefits 
to the insurance value chain, from AI-powered risk assessment 
processes to more efficient claims management.155

Technology companies are the technological backbone enabling 
the development and progress of AI solutions. They play an integral 
role in fueling innovation, integrating AI with other digital solutions 
for added value, while ensuring their growing energy demand is 
met by alternative energy sources:100

 • Technology leaders should identify and evaluate the growing 
need for resilience to develop innovative and efficient AI-powered 
resilience solutions. Continued investment in research, especially 
at the intersection of AI and complementary technologies such 
as IoT, digital twins, and cloud computing, can be important 
for enhancing and improving AI solutions. For instance, the 
combined use of IoT sensors and AI models enables high-quality 
predictive maintenance systems that can deliver significant 
economic, safety and reliability benefits (Box 4).

 • It is important to demonstrate the benefits of a technological 
solution in economic terms. This could help build trust and 
motivate infrastructure operators to implement AI-enhanced 
resilience solutions. Clear economic and financial benefits, 
such as avoiding damage, reducing insurance premiums, and 
operational savings, should be demonstrated for infrastructure 
operators to adopt these solutions. 

 • AI’s energy consumption could reach as high as 1,000 TWh 
by 2030 and even up to 3,500 TWh by 2050, representing an 
increasing share of global power consumption.100 Companies 
providing AI-based solutions can face growing energy demand 
for their operations. Technology providers should strive to 
maximize energy efficiency in their operations to mitigate 
increased energy costs due to higher electricity demand and 
reduce their environmental impact. As data centers consume 
more energy, many economies strive to expand electrification 
efforts to help achieve energy transition goals. In such contexts, 
technology providers are encouraged to enter into Power 
Purchase Agreements with renewable energy developers to 
ensure a reliable and cost-effective energy supply.
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Finally, architecture and engineering firms designing and 
constructing the infrastructure systems should help ensure they 
not only leverage AI, but also help prepare for infrastructure 
operators to embed AI-powered resilience solutions in their 
operating environment:

 • Architecture and engineering firms play a central role in 
embedding AI tools into the planning and design phases of 
infrastructure systems early to help enhance their resilience. 
This includes leveraging AI-powered digital twins, as illustrated 
in Box 3, to simulate system behavior under different stress 
scenarios (e.g., extreme weather, heavy usage, or cyber threats), 
enabling better-informed decisions and proactive risk mitigation. 

 • New infrastructure should be compatible with AI applications, 
such as predictive maintenance, automated system diagnostics, 
and real-time performance monitoring. This involves 
incorporating smart sensors, data platforms, and connectivity 
infrastructure from the outset to enable seamless integration of 
AI tools throughout the lifecycle of assets. Doing so would help 
ensure that operational teams could adopt AI solutions in the 
future, avoiding costly retrofits or redesigns. 

 • These firms are ideally placed to collaborate with technology 
and service providers, such as AI developers or data platform 
providers, to co-develop solutions tailored to infrastructure 
needs, serving as a bridge between infrastructure operators 
and these companies. These relationships can help ensure that 
new technologies and AI solutions developed are in line with the 
sector’s needs, and that these AI solutions can be integrated into 
their design.

Coordinated and decisive effort across stakeholders is important 
to help create resilient infrastructure. Stakeholders should work 
together to create infrastructure resilient to natural hazards, with 
AI models leveraged to reduce damages before, during and after 
these events, reinforced with AI models in each key resilience 
phase: planning, response, and recovery.

Stakeholders should 
work together to create 
infrastructure resilient 
to natural hazards, with 
AI models leveraged to 
reduce damages before, 
during and after these 
events.
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Appendices
Appendix 1. Estimation of the economic value 
of infrastructure
The 2022 infrastructure value is calculated based on the values from the Coalition for Disaster Resilient 
Infrastructure (CDRI)22 which is then used as a baseline for estimating future infrastructure value. The correlation 
between each infrastructure type and key economic indicators, notably GDP, population, and country income 
categories156 is analyzed and a linear regression function is developed for each infrastructure and each country 
economic category as a function of population and GDP using the World Bank data.48 The key considered 
infrastructure systems are roads and railways, power, telecommunications, water and waste water, ports and 
airports, and oil and gas, as defined by CDRI.

Using the GDP and population growth values estimated by the Economist Intelligence Unit49 through 2025, the 
future values of infrastructure systems are estimated. Using uncertainty propagation theory, based on the 
underlying uncertainty on the linear regression coefficients, an uncertainty range is assigned to the estimations.

Appendix 2. Assessment of the average direct 
costs of different hazards
The average losses occurred by hazards analysis is grounded in the Emergency Events Database (EM-DAT),2 which 
includes economic damages resulting from both types of natural disasters: acute shows and chronic stresses. 
The risk categories examined in this analysis include storms, floods, earthquakes, wildfires, droughts, and extreme 
temperatures. Disasters that do not fall into these categories are grouped into a residual “other” category. The EM-
DAT database offers global coverage and includes reported economic losses where such data is available, with a 
country level precision for each year until 2024. However, it is important to note that economic damages are often 
underreported, particularly in countries with limited insurance or reinsurance coverage, and where disaster events 
are less severe.2

To project the average annual loss to 2050 (in direct economic-loss terms), trend functions—exponential, linear, 
and logarithmic—were fitted to the available historical economic loss data for each hazard type. The function that 
exhibited the strongest correlation with the data was selected to project future losses. To incorporate variability 
in historical data and uncertainty of future evolution, a probability distribution function was applied around 
the selected trend line. This approach allowed for a representation of the potential volatility in future average 
annual losses. The projected values for the year 2050 should therefore be interpreted as the average annual loss 
expected, and actual annual figures can vary considerably depending on the frequency and intensity of disaster 
events in any given year.

AI for infrastructure resilience 	|	Appendices

32



To account for the increase in sustainability-related risks, the projections were adjusted using findings from 
IPCC projections in AR6 (2023).3 These adjustments were applied to relevant risk categories, specifically storms, 
floods, droughts, and extreme temperatures, where the scientific consensus suggests an increasing trend due to 
changing climate conditions.

It is worth mentioning that these projections should be considered as conservative average estimates, as 
underreported hazard and underlying damage data are not considered. Actual future losses, therefore, will likely 
exceed those presented here due to underreporting and data gaps.

Appendix 3. Calculation of the resilience 
enabled by implementation of AI
Estimating the benefits of AI for infrastructure resilience is a complex task. In this study, the potential of AI for 
infrastructure resilience is assessed only in terms of avoided direct infrastructure damages. Indirect costs, such as 
induced economic disruptions due downtime or externalities (fatalities, cultural heritage, etc.) are not considered.

Benefits of AI vary depending on the hazard. While it can mitigate wildfires thanks to monitoring images 24/7, 
the impact of AI for earthquake mitigation remains limited. This is why the benefits of AI are assessed by the type 
of hazard.

Only the six largest hazards in terms of annual average damages are investigated (storm, flood, earthquake, 
wildfire, drought, extreme temperatures), which represent over 99% of annual average damages (Figure 9).

For each hazard, the potential benefit of AI is considered for each of the most impactful two phases: planning and 
prevention, and response through detection and reaction. Benefits are assumed to be cumulative over resilience 
phases as both prevention and detection measures can be implemented. Potential of AI per type of hazard ranges 
from nearly 0% for earthquakes157 to up to 30% for wildfires158 (Figure 9).

By attributing a percentage multiplied to the projections of average annual infrastructure damages by 2050 
(Appendix 2) by type of hazard, based on a qualitative estimation of the effectiveness of AI (low, medium, and 
high), a quantitative value is extrapolated as the avoided damages caused by it. The high value corresponds to 20% 
based on the case study on early bushfire detection in Australia (Box 5), while the low value is estimated at 2.5%, 
central between 0 % and 5% to account for a reasonable low potential of AI for disaster risk reduction for very rare 
and extreme events that are hard to predict.159 Uncertainties are also estimated by adding a reasonable range 
around the central value, based on the different case studies of this report and the literature in Figure 13.  
Figure 12 summarizes the attributed values for effectiveness of AI solutions for each qualitative tag.

Figure 12. Effectiveness of AI solutions for different qualitative mapping tags

Source:	Deloitte	Global	analysis	based	on	the	case	studies	and	the	existing	quantifications

Mapping Central Uncertainty

high 20% ± 5%

medium 10% ± 5%

low 2.5% ± 2.5%
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Figure 13. Sources for levels of potential of AI for infrastructure resilience

The qualitative tags of high, medium, and low are then defined based on the existing qualitative evaluations of 
different AI solutions, summarized in Figure 13 below.

The multiplication of the identified qualitative tags in Figure 13 by the values in Figure 12 results in the following avoided 
economic damage values for each of the resilience phases against each type of natural hazard in Figure 14.

Type of hazard
Plan / Prevent Respond / Detect and React

Level Source Level Source

St
or

m

Medium
United	Nations	for	Disaster	Risk	Reduction,	
“USA:	AI	for	designing	hurricane-resistant	
buildings”, 2023.

Low

US	government	Accountability	Office,	“Artificial	
Intelligence in Natural Hazard Modelling: Severe 
Storms,	Hurricanes,	Floods,	and	Wildfires”,	
December 2023.

Fl
oo

d

Medium

K.	Feng,	N.	Lin,	et	al.,	“Reinforcement learning–
based adaptive strategies for climate change 
adaptation:	An	application	for	coastal	flood	risk	
management”,	Proc.	Natl.	Acad.	Sci.	U.S.A.	2025.

Medium

US	government	Accountability	Office,	“Artificial	
Intelligence in Natural Hazard Modelling: Severe 
Storms,	Hurricanes,	Floods,	and	Wildfires”,	
December 2023. 

Ea
rt

hq
ua

ke

Medium
Cong	Y,	Inazumi	S.	“Artificial	Neural	Networks	and	
Ensemble	Learning	for	Enhanced	Liquefaction	
Prediction	in	Smart	Cities”. Smart Cities. 2024. 

Low
Cemil	Emre	Yavas,	Lei	Chen,	Christopher	Kadlec et.	
al,	“Improving earthquake prediction accuracy in 
Los	Angeles	with	machine	learning”,	2024.

W
ild

fi
re

Medium
United	Nations	for	Disaster	Risk	Reduction,	“What 
sparks	a	wildfire?	The	answer	often	remains	a	
mystery”,	2025.

High

US	government	Accountability	Office,	“Artificial	
Intelligence in Natural Hazard Modelling: Severe 
Storms,	Hurricanes,	Floods,	and	Wildfires”,	
December 2023.

D
ro

ug
ht

Low

Miao	Zhang,	Hajra	Arshad,	et	al.	2025.	“Quantifying 
Greenspace	with	Satellite	Images	in	Karachi,	
Pakistan”.	ACM	J.	Comput.	Sustain.	Soc.	3,	1,	Article	
6	(2025),	https://doi.org/10.1145/3716370

Low

Alexander	Marusov,	Vsevolod	Grabar,	et	al.	
“Long-term	drought	prediction	using	deep	neural	
networks based on geospatial weather data”,	
Environmental	Modelling	&	Software,	2024.

Ex
tr

em
e 

te
m

pe
ra

tu
re

s

Low
Camps-Valls, et	al.	“Artificial	intelligence	for	
modeling and understanding extreme weather 
and climate events”. Nat Commun	16,	1919	(2025).

Low

Vonich,	P.	T.,	&	Hakim,	G.	J.	“Predictability	Limit	
of	the	2021	Pacific	Northwest	Heatwave	From	
Deep-Learning	Sensitivity	Analysis”,	Geophysical	
Research	Letters.	2024.

Figure 14. The final avoided damage values due to AI-powered resilience against each hazard in 2050 (US$ billion per year)

Source: Deloitte Global analysis based on the values in Figure 12 and Figure 13 and the methodology described above

Central Uncertainty

Storm 32 ±19

Flood 21 ±10

Earthquake 6 ±4

Wildfire 7 ±2

Drought 1 ±1

Extreme temperature 1 ±1
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