
Securing Blockchain Workloads on AWS
Security considerations when planning to deploy Amazon
Managed Blockchain workloads

Contents

What is blockchain? 1

How does blockchain function? 1

Blockchain core concepts 1

AWS managed blockchain 2

Security considerations for blockchain 3

1

Securing Blockchain Workloads on AWS

Blockchain core concepts
Cryptography: Blockchain’s transactions achieve
validity, trust, and finality based on cryptographic proofs
and underlying mathematical computations between
various trading partners

Immutability: Blockchain transactions cannot be
deleted or altered. These characteristics of data object
ownership, data revision, and data governance, are
typically structured and defined as part of a data
architecture

Members: This term is applicable to permissioned
blockchains such as Hyperledger fabric and is used to
describe a unique identity in the network. For example,
a member might be an organization in a consortium
of banks. A single AWS account might have multiple
members. Each member can run one or more
peer nodes.

Nodes: A distributed network of computers running
software that can verify blocks and transaction data,
endorse transactions, and store a local copy of ledger.

Smart Contracts: Provide automated actions based
on triggers. They typically are used to automate the
execution of an agreement without any intermediary’s
involvement. Smart contracts in Hyperledger Fabric are
known as “Chaincode”.

Decentralized database: Each participating partner
always has access to a distributed database in its
entirety. No single party controls the database, which
every party can verify or regenerate if required without
having a central intermediary. Data structures and data
hashing also influence architecture modelling.

Distributed transaction-processing platform: Ledgers
handle a range of transactions, including exchanging
value, assets, or other entities. Transaction processing
is moving from a monolithic approach towards an
integrative, digital platform

Permissions: Permissions are determined by the nodes
participating in a blockchain network: any user can add
nodes to a permissionless blockchain network, whereas
on a permissioned blockchain, only pre-authorized users
can add nodes to the network.

What is blockchain?
Blockchain’s (or distributed ledger technology) evolution
has been compared to the early rising of the internet
with comments and arguments of the technology’s
potential to disrupt multiple industries, including
Healthcare, Public Sector, Energy, Manufacturing, and
particularly Financial Services, where it is predicted to be
the beating heart of finance and the ultimate provider
of a new industry fabric. A Blockchain, or distributed
ledger, is a technological protocol that enables data to be
exchanged directly between different contracting parties
within a network without the need for intermediaries.
Each transaction is communicated to all network
nodes, and once verified and confirmed, is added to an
immutable transaction chain.

How does blockchain function?
Typically, a user or node will initiate a transaction,
which signs it with its private key. Essentially, the private
key will generate a unique digital signature that will
validate the identity and prevent the transaction from
being altered. If anyone were to attempt to modify the
transaction information, the digital signature would
change, no one would be able to verify it, and it would
be discarded. The transaction would then be broadcast
to the verifying nodes. The blockchain platform can use
different methods to verify whether the transaction
is valid or not, which are referred to as consensus
algorithms. Once enough of the nodes verify that the
transaction is authentic, it will be placed on the ledger
and will incorporate a hash of the previous block to
protect it from alteration. For most ledgers, aside from
those that fall into the distributed ledger technology
(DLT) category, information on these transactions is then
incorporated into a “block” that cryptographically
linked to the previous block to form a chain, thus the
name blockchain.

2

Securing Blockchain Workloads on AWS

AWS managed blockchain
Amazon Managed Blockchain is a managed service that
makes it easier to join public networks or create and
manage scalable private networks using the popular open-
source frameworks Hyperledger Fabric and Ethereum. You
can use Managed Blockchain to create scalable blockchain
resources and networks quickly and efficiently using
the AWS Management Console, the AWS command line
interface (CLI,) or the Managed Blockchain SDK.

Frameworks of AWS managed blockchain

Ethereum

Ethereum is a decentralized blockchain framework
that establishes a peer-to-peer network to securely
execute and verify application code. This code is called
“smart contracts” and allows participants to conduct
verified transactions without a trusted central authority.

Transactions are sent and received by Ethereum accounts
that are created by users, and Ethereum’s native
cryptocurrency, Ether, is used as a cost for processing
transactions on the network. A sender must sign
transactions and spend Ether. These transaction records
are immutable, verifiable, and securely distributed across
the network, which gives participants full ownership and
visibility into this data.

Hyperledger Fabric

Hyperledger Fabric is an open source blockchain
framework from the Linux Foundation that enables
participants to write blockchain applications. It offers
access control and permissions for data on the blockchain.
Hyperledger fabric allows creation of a private blockchain
network and limits the transactions that each party
can view.

The table below shows the key differences between Ethereum and Hyperledger Fabric Frameworks:

Feature Ethereum Hyperledger Fabric

Confidentiality Public blockchain Private blockchain

Governance Ethereum Developers Linux Foundation

Participation Public blockchain
Organizations having Certificate of
Authorization

Programming Language Solidity, Vyper Golang, JavaScript, or Java

Mechanism Proof of Stake Pluggable consensus mechanism

Ledger Type Permissionless Permissioned

Cryptocurrency/Tokens Ether or Ethereum None

Securing Blockchain Workloads on AWS

3

Security considerations
for blockchain
Many of the same security considerations that apply
to traditional application workloads also need to be
considered for blockchain workloads. With that said,
there are a few specific areas that are unique and/or
may require additional focus due to the nature of these
types of workloads: Identity and Access Management,
Cryptographic Key Management, Data Protection, and
Smart Contract development. Some of the specific
decisions that need to be made when deploying these
types of workloads on AWS are outlined below:

Identity and access management

There are several elements to this, and they differ slightly
depending on whether you are using Hyperledger Fabric
or Ethereum but there are essentially three levels of
access you need to manage.

1. Manage access to deploy and manage Amazon
Managed blockchain infrastructure

This is handled the same way as with other AWS resources:
authentication is handled by AWS, and permissions are
determined by the IAM permissions associated with the
IAM principal. As with other permissions in AWS, it is
recommended that a least privilege strategy be employed
and only those that should have access to perform these
activities are permitted to do so. One potential approach
here is to create a dedicated IAM role that will be used for
creating new Hyperledger Fabric Peer Node or Invitation
Proposals and allow only designated personnel, or better
yet if embracing a “shift-left” approach, deployment
pipeline identities, the ability to assume that role only
when performing these operations. The use of guardrails
in the form of Service Control Policies (SCPs) can also
be helpful for enforcement. Additionally monitoring and
alerting can be setup to identify anomalous, suspicious, or
unauthorized activities.

2. Managing access to interact with the
Hyperledger Fabric or Ethereum API

Hyperledger Fabric - When the first member is created
on a Hyperledger Fabric network on Amazon Managed
Blockchain, the member’s first user must be specified.
Managed Blockchain registers the identity of this user
automatically with the Hyperledger Fabric CA. This is
called a “bootstrap identity”. Even though the identity is
registered, additional steps must be taken to enroll this
user as an admin and update certificates. These steps

can be performed from a Hyperledger Fabric framework
client machine as outlined by AWS here. After the prior
steps have been completed, the identity can install
and instantiate chaincode, which can be used to enroll
additional identities as admins. An important callout here
is that Amazon Managed Blockchain does not support
revoking user certificates. After an admin is created,
the admin persists for the life of the member. This is
an important consideration when developing an IAM
Lifecyle strategy.

Ethereum - The process is similar on Amazon Managed
Blockchain,; however, there is no concept of additional
admin users, and only the authorized IAM principal in the
AWS account that created the node can interact with it
using the Ethereum APIs.

As mentioned previously regarding the deployment of
the nodes themselves, it is a good idea to implement
restriction on these actions and use a dedicated IAM
role ideally assumed by a deployment pipeline when
performing these activities.

An important note here is that Ethereum running on
Amazon Managed Blockchain currently does not support
the use of IAM policies for authorization out of the box.
However, with ERC725 being the identity standard in
Ethereum, theoretically it could be possible to manage
access via smart contracts and this is an emerging area
of development. Hyperledger Fabric currently does not
support resource based polices but attribute-based
policies are supported through a combination of tagging
and using IAM. Both utilize an AWS sigv4 signature for
authentication.

3. Manage access for external users interacting
with the blockchain

The interaction of a user with an application that is
running on a Hyperledger Fabric blockchain network must
be explicitly allowed. To do this, user accounts, in the
form of certificates and with the appropriate permissions,
will need to be created in the Hyperledger Fabric CA, a
mechanism that allows the users to authenticate and
gain access to the certificate to perform the desired
activities. One such solution that has been developed for
this and uses Amazon Cognito, Amazon API gateway and
AWS Lambda, which can be employed to allow users to
interact with the Blockchain, is illustrated here. As with
administrative users, it is a good idea to develop a strategy
early on for how user identities and the associated
certificates will be managed to identify
lifecycle perspective.

https://docs.aws.amazon.com/managed-blockchain/latest/hyperledger-fabric-dev/framework-client.html
https://docs.aws.amazon.com/managed-blockchain/latest/ethereum-dev/ethereum-api.html
https://hyperledger-fabric-ca.readthedocs.io/en/release-1.4/
https://aws.amazon.com/blogs/database/integrate-amazon-managed-blockchain-identities-with-amazon-cognito/

Securing Blockchain Workloads on AWS

Data Protection

AWS offers a variety of tools and services which can help
to strengthen aspects of data protection if incorporated
effectively in the blockchain design. AWS provides out-
of-the-box options to handle encrypting data in transit
and at rest for Amazon Managed Blockchain. By default,
Managed Blockchain uses an HTTPS/TLS connection
to encrypt all data that is transmitted from the AWS CLI
on a client computer to AWS service endpoints as well
as to communicate with other AWS resources. Amazon
Managed Blockchain also offers fully managed encryption
at rest. Managed Blockchain encryption at rest provides
enhanced security by encrypting all data at rest on
Ethereum nodes that use Managed Blockchain-owned
encryption keys in AWS Key Management Service (AWS
KMS). By default, the member key is owned by AWS but
can also be managed by the customer for an additional
charge. Something important to be aware of is the
supported encryption key options are slightly different
depending on the framework being used for the Amazon
Managed Blockchain service. For Hyperledger Fabric, an
AWS owned key, or a Customer Managed Key (CMK) can
be configured. A CMK gives the customer control over
the keying material that is used, the interval at which the
key is rotated, and allows them to manually rotate the
key if necessary and is the recommended option when

available. Using a Customer Managed Key (CMK) or AWS
Managed Key is not supported for Amazon Managed
Blockchain using Ethereum, only an AWS Owned Key which
is managed by Amazon Managed Blockchain service is
currently supported.

Encrypting data in transit and at rest is an important
part of protecting data but what about restricting access
to information so that only those that are authorized
have access? In some ways the very idea of this goes
against one of the core concepts of blockchain, which is
transparency, but this is often a requirement for certain
data in real world applications of this technology.

One option for restricting access to data on Hyperledger
fabric, is to use private data collections. These collections
allow one to store the data so that it can only be accessed
by a certain portion of authorized organizations, and
those authorized organizations can access that data
without needing to create a separate channel. The private
data collection consists of the sensitive data, which is sent
peer-to-peer over the authorized organizations, and a
hash of the private data. The hash is written to the ledgers
of every authorized peer on the channel and retains
evidence of each transaction.

 Access to data can also be restricted by using a “channel”,
a channel is a private communication pathway between

Figure 2 – Storing Data Off-Chain

Blockchain

On-chain Off-chain

Participants

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#aws-owned-cmk
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html#private-data

Securing Blockchain Workloads on AWS

two or more members of a Hyperledger Fabric network on
Amazon Managed Blockchain. Channel is built by members
(organizations), shared ledger, anchor peers per member,
ordering service nodes and chaincode applications.
Each transaction on Hyperledger fabric network occurs
on a channel and everyone should be authenticated,
authorized to transact on a channel. Members shares their
admin certificates and root CA with the channel creator
when they join the channel which is used to authenticate
and authorize members of the channel.

Another approach is the use of hashing. As mentioned
previously, this process is at the core of how blockchain
functions and involves the use of an encryption key to
create a one-way encryption which is not decryptable.
There is no way to decipher this information with the
hash alone; however, the hash can be used to validate
the information by re-hashing it and comparing the
results. Unlike encryption, hashing does not provide
as a mechanism to securely distribute information but
it can be used by two separate parties to validate the
information, which is still a common requirement for use
cases involving smart contracts. You can combine this with
a mechanism to store the data off-chain to address the
need to securely store and distribute this information. One
example of a solution built to do just that can be found
here. It utilizes Amazon API Gateway, Step Function, and

Lambda to store the off-chain data in S3. You can then
create bucket policies and/or leverage IAM to allow only
designated external parties to access the data.

One last thing related to data protection that is
important to consider whenever evaluating blockchain
as a potential solution are regulatory requirements.
Data protection related regulatory requirements such
as regulatory requirements related to GDPR (General
Data Protection Regulation) must be considered when
developing blockchain based solutions. Blockchain’s
decentralized nature makes it nearly impossible to
designate responsibility for controlling data and enforcing
GDPR standards and at the time of this writing, there is
currently no definite conclusion on whether blockchain
technologies can comply with GDPR’s data modification
and erasure requirements. This can be a non-starter for
some organizations in highly regulated environments.

https://aws.amazon.com/blogs/database/part-1-store-off-chain-data-using-amazon-managed-blockchain-and-amazon-s3/
https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_STU(2019)634445_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/STUD/2019/634445/EPRS_STU(2019)634445_EN.pdf

Securing Blockchain Workloads on AWS

Cryptographic Key Management

So far, we have discussed how Blockchain leverages
cryptographic algorithms and keys to link transactions,
guarantee immutability in a distributed ledger,
authenticate users, and protect data. It is hard to overstate
just how important it is that these keys are securely stored
and managed. Developing and implementing an effective
encryption key management strategy early on is critical.
Some important things to consider when developing this
are outlined below:

1. Cryptographic key management using industry
standards and leading practices, which advocates
storing encryption keys away from the blockchain
ledger in a secure way.

2. Users should be authenticated and authorized to
use keys.

3. Cryptographic keys needs to be available for smart
contracts and users. This is a challenge in a distributed
blockchain environment.

4. Blockchain uses atypical cryptographic algorithms
that are incompatible with some existing key
management solutions

5. Access to cryptographic keys needs to be restricted
and process in place for granting and revoking access
to keys.

Encryption (with key management) is one of the strongest
data protection methods available—often serving as the
last line of defense against threats when other controls
have failed. Customer-managed keys can be allocated
by account, service, region, application, and/or by
environment. It is critical to standardize the key hierarchy
for native services before rolling out to cloud accounts.
Organizations should also determine how keys should be
generated, stored, rotated, and deactivated—and build a
process around the lifecycle.

A centralized key management system:

 • Allows organizations to manage large numbers of keys
throughout their lifecycle

 • Makes auditing and policy enforcement easier
to implement

 • Allows for key distribution to a single or multi-cloud
environments

AWS Key Management Service can be a valuable tool to
help with the process. It provides a mechanism to securely
generate, store, rotate and restrict access to keys. With
this said, there are some important things to keep in mind
beyond just leveraging this service.

For one, Hyperledger Fabric has its own certificate
authority that is used to manage user identities and issues
enrollment certificates for securely communicating within
the blockchain network. When an admin is created, a
certificate is generated and stored on the Hyperledger
Fabric Client Machine. Additional admin users can also
be created if required. Each admin user will get their own
set of keys created. For an organization a root certificate
is stored in the Fabric certificate authority (CA). For the
different users in an organization the Fabric CA also issues
certificates. An enterprise-grade Fabric CA uses various
components and can be deployed in different ways using a
Hardware Security Module (HSM) such as AWS Cloud HSM
for added protection.

Additionally, in Ethereum, an account is essentially a
cryptographic key pair (public and private). By default,
these are created outside of AWS and it is common for
users to manage their own keys which they then use to
sign transactions, but this can pose challenges when it
comes to security and manageability. Additionally, for
certain use cases such as those involving automated
external processes it is necessary to have a mechanism
to centrally store and access these keys. This is where
a service like AWS KMS can be leveraged. An excellent
example how this has been done can be found in this
series of blog posts.

6

https://aws.amazon.com/blogs/database/part1-use-aws-kms-to-securely-manage-ethereum-accounts/

7

Securing Blockchain Workloads on AWS

Finally, there are some challenges associated with
utilizing AWS KMS for certain low-level tasks. Some of the
blockchain clients don’t natively support AWS KMS and
there are some incompatibilities with the cryptographic
algorithms used. One approach that is gaining traction to
address these challenges is the use of AWS Nitro Enclaves
to perform tasks on the blockchain. AWS Nitro Enclaves
securely protects highly sensitive data by allowing

customers to create isolated compute environments that
reduce attack surface area. An excellent set of AWS blog
posts that detail these challenges and how one can go
about using AWS Nitro Enclaves for this can be found here.
A table of possible options for generating, storing, and
managing cryptographic keys used for encryption at rest,
authentication, hashing, and transactions is shown below.

Generation

Distribution

Storage

Use

Destruction

Cryptographic Key Generation Cryptographic Key Storage Cryptographic Key Usage

AWS Key
Management

Service

AWS CloudHSM AWS Secrets
Manager

AWS CloudHSM AWS Nitro
Enclaves

AWS CloudHSM

https://aws.amazon.com/blogs/database/part-1-aws-nitro-enclaves-for-secure-blockchain-key-management/

8

Securing Blockchain Workloads on AWS

Smart contract development

As mentioned previously, smart contracts are really just
tiny programs distributed to all nodes in a blockchain
network that automatically execute a predetermined set
of actions when certain conditions are met. As such, just
like any other code, they are subject to flaws that can allow
them to operate in unintended ways. There have been
several instances recently where a vulnerability in a smart
contract was exploited, resulting in tens of millions of
dollars in losses; thus, it is imperative that security checks
be incorporated into the smart contract development
process to identify any potential security issues as
early as possible and well before these are deployed to
the blockchain.

Before diving into recommendations to identify and
address vulnerabilities in smart contracts, one important
distinction to point out is, unlike typical application code,
smart contracts on Ethereum are immutable, which means
that once they are deployed to the blockchain they cannot
be changed. That’s not to say there are not methods to
upgrade these to fix a vulnerability, change the logic, or
add a new feature, but a strategy for this needs to be
established early in the process. Since this can have a big

impact on the way in which contracts are initially written,
this should ideally be decided before initial development
starts. Some information on updating smart contracts
in Ethereum can be found here which talks about the
common methods that can be used to as well as the
pros and cons of each. Once that is sorted out, the next
focus should be on how to incorporate security into the
overall smart contract development process. Generally,
this includes taking all the steps usually performed as
part of the secure code development process, but the
key differences being the types of vulnerabilities and
the tooling available to detect these. A good place to
start is to review some useful information is this page
from Ethereum.org. Due to the relatively young age of
blockchain, many of the tools to support this process are
still in early stages of development, but they have come
a long way in recent years. Some of the popular open-
source tools that are available to help with this are Slither,
Mythril or Manticore, but this is an evolving landscape. The
figure below illustrates a possible workflow utilizing AWS
CodeCommit and an open-source tool, such as one listed
above, running inside an AWS CodeBuild job to scan the
chaincode for vulnerabilities before deploying it to
the blockchain.

Figure 4 – Chaincode Deployment Flow

https://ethereum.org/en/developers/docs/smart-contracts/upgrading/
https://ethereum.org/en/developers/docs/smart-contracts/security/#attacks-and-vulnerabilities
https://ethereum.org/en/developers/docs/smart-contracts/security/#attacks-and-vulnerabilities
https://github.com/crytic/slither
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/manticore

9

Securing Blockchain Workloads on AWS

Special Thanks
Steve Bollers

AWS Sr. Partner Solutions
Architect

Amazon Web Services

sboller@amazon.com

Jeff Kaiserman

AWS Principal GSI Security
Partner Solutions Architect

Amazon Web Services

jkaiserm@amazon.com

Nishit Shetty

Advisory Consultant, Cyber Risk
Services

Deloitte & Touche LLP

nishitshetty@deloitte.com

Jay Brown

Advisory Consultant, Cyber Risk
Services

Deloitte & Touche LLP

jaybrown@deloitte.com

Authors
Deloitte & Touche LLP
Aaron Lennon

Advisory Specialist Leader,
Cyber Risk Services

Deloitte & Touche LLP

alennon@deloitte.com

Barathi Krishnamurthy

Advisory Senior Consultant,
Cyber Risk Services

Deloitte & Touche LLP

bakrishnamurthy@deloitte.com

Hannah Dutler

Advisory Consultant, Cyber Risk
Services

Deloitte & Touche LLP

hdutler@deloitte.com

Contact
Aaron Brown

Advisory Partner, Cyber Risk
Services AWS Alliance Leader

Deloitte & Touche LLP

 aaronbrown@deloitte.com

Ravi Dhaval

Advisory Senior Manager,
Cyber Risk Services

Practice and Innovation Lead

Deloitte & Touche LLP

 rdhaval@deloitte.com

Tim Davis

Advisory Principal, Blockchain &
Digital Assets leader

Risk & Financial Advisory

Deloitte & Touche LLP

timdavis@deloitte.com

mailto:sboller%40amazon.com?subject=
mailto:jkaiserm%40amazon.com%20?subject=
mailto:nishitshetty%40deloitte.com?subject=
mailto:jaybrown%40deloitte.com?subject=
mailto:alennon%40deloitte.com?subject=
mailto:bakrishnamurthy%40deloitte.com%20?subject=
mailto:hdutler%40deloitte.com?subject=
mailto:%20aaronbrown%40deloitte.com?subject=
mailto:%20rdhaval%40deloitte.com?subject=
mailto:timdavis%40deloitte.com?subject=

10

Securing Blockchain Workloads on AWS

Sources:
1. Work with Hyperledger Fabric Components and Chaincode—

Amazon Managed Blockchain

2. Using the Ethereum APIs with Amazon Managed Blockchain —
Amazon Managed Blockchain

3. Welcome to Hyperledger Fabric CA (Certificate Authority) —
hyperledger-fabric-cadocs master documentation

4. Integrate Amazon Managed Blockchain identities with Amazon
Cognito | AWS Database Blog

5. Private data — hyperledger-fabricdocs main documentation

6. Create Additional Isolation to further Protect Highly Sensitive Data
within EC2 Instances | AWS Nitro Enclaves

7. Store off-chain data using Amazon Managed Blockchain and
Amazon S3: Part 1 | AWS Database Blog

8. EPRS_STU(2019)634445_EN.pdf (europa.eu)

9. Develop Hyperledger Fabric Chaincode - Amazon Managed
Blockchain

10. Smart contract security | ethereum.org

11. Hedera – How it Works: Hashgraph ConsensusHedera – How it
Works: Hashgraph Consensus

12. Freeman Law: Permissioned and Permissionless
BlockchainsFreeman Law: Permissioned and Permissionless
Blockchains

13. GitHub - ConsenSys/mythril: Security analysis tool for EVM
bytecode. Supports smart contracts built for Ethereum, Hedera,
Quorum, Vechain, Roostock, Tron and other EVM-compatible
blockchains.

14. GitHub - trailofbits/manticore: Symbolic execution toolGitHub -
trailofbits/manticore: Symbolic execution tool

11

Securing Blockchain Workloads on AWS

About Deloitte
Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by
guarantee (“DTTL”), its network of member firms, and their related entities. DTTL and each of its member
firms are legally separate and independent entities. DTTL (also referred to as “Deloitte Global”) does not
provide services to clients. In the United States, Deloitte refers to one or more of the US member firms of
DTTL, their related entities that operate using the “Deloitte” name in the United States and their respective
affiliates. Certain services may not be available to attest clients under the rules and regulations of public
accounting. Please see www.deloitte.com/about to learn more about our global network of member firms.

Copyright © 2023 Deloitte Development LLC. All rights reserved.

Designed by CoRe Creative Services. RITM1396170

	What is blockchain?
	How does blockchain function?
	Blockchain core concepts
	AWS managed blockchain
	Security considerations for blockchain

