
Security Risk Contained:
a threat-centric approach to container
& microservices security

Contents

Adopting modern computing and microservices architectures 1

Container security threat landscape 2

Solution overview 4

Solution components 5

Solution benefits 7

Conclusion 8

Authors 9

Policy and Security Automation using AWS Control Tower

Adopting modern computing
and microservices architectures

so organizations should consider having a dynamic
approach to container security that is grounded in
a cohesive container security strategy. That way,
vulnerabilities can be detected and remediated
at any point; from base images in repositories to
running containers and microservices. With engineers
increasingly relying on open-source capabilities to
leverage public container images, AWS realizes and aims
to mitigate the associated risks by offering a pool of
native security services and solutions with automation
capabilities that help customers effectively drive their
container security strategies. The ability to deploy these
services and solutions as code also offers customers
the ability to extend their existing Continuous
Integration/Continuous Delivery (CI/CD) pipelines and
DevSecOps processes to execute this strategy and
rapidly scale their security across the enterprise.

Adopting containers, especially in the cloud, has enabled
customers to modernize their applications, with the
ability to scale rapidly in a more agile manner. With
containers, organizations have the ability to move away
from monolithic applications to adopt microservices
architecture that decouples critical services.
By decoupling services, developers can scale, patch,
and push updates to each service independently.
Thus, containers can potentially lend themselves to
increased application uptime, elasticity via autoscaling,
and fault tolerance.

But, as is often the case, with increased capabilities
come increased security risks. While the shared
responsibility model of Amazon Web Services (AWS)
conveniently absorbs some of the risks, the remainder
is up to the organization to secure. The threat
landscape for containers is vast and ever-changing,

1

2

Policy and Security Automation using AWS Control Tower

Container security threat landscape
important to create secure operational processes across
the container lifecycle. These processes are pivotal to
fending off threats that arise from mismanagement of
container images, Kubernetes clusters, and policy. One
common example relates to container image updates
upon discovery of a vulnerability. In this example, a
container image, which has already been scanned
against vulnerabilities, sits in the image registry awaiting
deployment. Over time, a vulnerability is discovered on
the image. There should be a process in place to quickly
remove the image from the registry to prevent it from
getting deployed into a Kubernetes cluster. Otherwise,
malware can proliferate in the cluster and create an
opening for attackers to gain access. Additionally,
another process should be in place to quickly replace
the vulnerable image with a newer version, so that the
next image deployed by Kubernetes is both available
and secure.

Threats associated with containerized deployments
may need compensating controls for the overall security
architecture as well as for the components that make up
the containerized deployment model.

Because developers are at the crux of container security,
it is imperative for InfoSec organizations to incorporate
security initiatives across the entire containerization
lifecycle, with capabilities to generate insights for
learning and continuous enhancement of container
security posture to enable a secure yet frictionless
development and deployment experience, while helping
to achieve and maintain consistently high compliance
standards.

Operational Processes

Often organizations dive into building cutting-edge
technology to securely design and operate their
containerized architectures. It is, however, equally

Figure 1 - Deloitte perspective on container security capability & compliance lifecyle

Develop & Deploy Architect & Design

Operational Process Maturity

Build-Time Security Run - Time Security

Policy Enforcement

Policy as Code

Continuous Security & Compliance

Architecture
Design

Insight Generation
& SIEM

Container
Image &

Registry Build

Policy
as Code

Cl/CD

Threat Modelling
& Integrated

Controls

Container
Security
Strategy

Log Generation
& Collection

Security
as Code

Infrastructure
as Code

AWS CodePipelines
to Deploy

Customizations

Terraform Based Code
Development & Enhancement

Cloud Based
Containerized Security

Architecture Monitorin:
 - Data
 - Application
 - Network & Identity
 - Container Workload
 - Endpoint
 - Vulnerability

 - IaC

Policy and Security Automation using AWS Control Tower

Container-as-a-Service – e.g., Fargate). To help protect
the underlying OS from outside access, it is imperative
to design granular role-based access control (RBAC)
as unrestricted access could create opportunities for
unauthorized users to access the OS kernel. In addition
to access controls, it is also important to implement
sufficient Amazon Machine Image (AMI) scanning
capabilities in the pre-production environments for
early identification and remediation of OS vulnerabilities.
If underestimated, both these threat scenarios could
result in compromise of the underlying OS kernel;
in turn, this could open doors to other lateral threat
vectors, which, if exploited, could lead to infiltration
across the rest of the infrastructure.

Runtime Security

It is equally important for organizations to address
runtime security to enable secure infrastructure
deployment for running application components.
Security engineers need to consider threat vectors
that could pose risk to the container itself as well as
the container orchestration layer that manages the
container infrastructure. To secure the containers,
organizations need to protect the data that is stored and
processed within the containers as well as the network
communications between containers and other services.
Improper encryption-at-rest controls for encrypting data
within containers could result in information leakage,
exposing sensitive data like Application Programming
Interface (API) keys, secrets, personal information,
service configurations etc.

Policy Enforcement

Container policy enforcement can be another key
focus area when addressing threats, as it manifests
in numerous places in the container lifecycle. Namely,
policy should be enforced in the CI/CD pipeline as
policy-as-code, it can play a role at the Kubernetes
management plane for authentication, authorization
and admission control, and it is also vital in helping
detect and block unsanctioned traffic between pods
at the service mesh level. For example, policy can
block unauthorized access at the API server level via
Kubernetes ingress control and can block attempts
to compromise the application by denying privileged
activities such as destroying clusters or detaching
volumes. Tools such as Open Policy Agent (OPA), Styra
Declarative Authorization Service, and other third-party
policy management tools can help mitigate threats
mapped to the MITRE Adversarial Tactics, Techniques,
and Common Knowledge (ATT&CK) framework, Pod
Security Policy (PSP), and other common threat and
vulnerability frameworks.

Another common example where processes can
mitigate threats has to do with destroying and recreating
containers. Containers are meant to be ephemeral, so
leaving a container running for too long increases the
chances of container compromise. Periodically restarting
containers and clusters can facilitate container patching
without disturbing the application’s uptime. Secure
operational processes should govern container restarts
to establish that containers are treated uniformly and
track any approved exceptions. The alternative would
be a Kubernetes environment populated with rogue
containers running expired software. Operational
processes are important to help mitigate these threats,
especially in situations where stateful containers are
used, such as containerized databases, as the container
restart process would involve detaching and reattaching
persistent storage volumes.

Build-Time Security

Organizations should address build-time security by
considering threat vectors applicable to development
of the container image as well as the storage of those
images in a container registry. Developers start building
container images with templates called base images,
which they can either download from online (trusted
or untrusted) registries or build themselves and store
internally. If developers download base images from
an online registry, they could expose the organization
to risks such as the authenticity/legitimacy of the
registry source as well as vulnerabilities or exploits that
could be in the base image itself. Ultimately, relying on
unverified registries could result in deploying images
that run outdated, vulnerable, and/or untrusted
software packages. On the other hand, if developers
build their own base images, they should sufficiently
secure the base configurations, such as the granularity
in access controls, packages running, and libraries called
that could be exploited to disturb the integrity of the
container base image. Either way, the container image
could end up running vulnerable versions of software
packages which could seep into other upstream and/
or downstream software components. This could result
in potential zero-day situations such as supply-chain
attacks, impacting an organization, its customers and
the organization’s brand.

Even though containers may reduce organizations’
responsibility to secure the underlying compute
infrastructure security, security teams need to
secure the Operating Systems (OS) upon which
the containerized application will be running (note:
this is only the case for Infrastructure-as-a-Service
container deployments – e.g., Elastic Container Service
(ECS), Elastic Kubernetes Service (EKS) – and not for

3

4

Policy and Security Automation using AWS Control Tower

Guiding Principles:
 - Map each recommendation
 to a container threat
 - Reduce number of tools as
 much as possible
 - Utilize container security
 leading-practices and industry
 guidance
 - Leverage existing toolset
 vendor relationships when
 possible
 - Provide actionable
 recommendations to address
 each gap

Container Security Strategy

Repeat
for Each
Use-Case

Conduct Initial
Discovery

Workshops

Identify SMEs and
stakeholders for

each Use-Case

Break Down
Use­Cases into Technical

Requirements
Conduct Initial
Discovery Workshops

Conduct Initial
Discovery Workshops

Research
Options
that can
Address

Gaps

Conduct
Use-Case
Review

Session(s)

Prepare
Recommendations

Provide
Final

Version

Incorporate
Feedback into

New Version

Map Technical
Requirements to

Threat Model

Solution Overview
The result of this exercise is a report assessing
organizations’ container security posture when it comes
to setting operational guidelines, securing container
build-times, monitoring container runtimes, and
enforcing container policy.

This approach has effectively helped organizations build
architecture patterns to remediate the gaps identified by
the threat model mapping exercise.

By helping organizations adopt threat-based
approach to realize their business use-cases, Deloitte
recommends a standardized approach for building a
container security strategy, given the constraints of
the specific organization’s environment (see Figure
1). The approach begins with methodically analyzing
existing container environments, identifying gaps, and
mapping those gaps to a threat model. Enabled by AWS’s
container threat intelligence (GuardDuty & Inspector,
as explained in Solution Components section), Deloitte
advises organizations to periodically enhance their
threat model so that new strategies encompass and
mitigate the latest vulnerabilities and exploits. This way,
organizations can potentially achieve and maintain
continuous compliance

Figure 2 - Deloitte approach to building a container security strategy

5

Policy and Security Automation using AWS Control Tower

Figure 3 - Example of build-time container security architecture

Solution Components
2. Build-time Security: Securing containers prior to

deployment is fundamental to adopting a shift-left
security model. By building security checks and
gates earlier into the container lifecycle, developers
are empowered to address security in their image
builds. Additionally, adopting build-time security
controls can help prevent security from becoming a
blocker downstream. The diagram below (see Figure
3) gives an overview of what build-time security
can look like, focusing on a secure pre-deployment
process starting with the base image (bottom-left)
and ending with container deployment (top-right).
An important consideration in build-time container
security is the continual maintenance of container
images and base images. Over time, images
become stale and unless they are replaced with
newer images both in build-time and in runtime,
vulnerabilities can persist. There are a number of
solutions that address this consideration at different

Deloitte has observed that there are four areas that
should be taken into consideration when architecting for
container security:

1. Operational Process Maturity: As the size of the
container environment grows and correspondingly
the number of developer teams deploying
containers grows, it is extremely important to codify
and standardize teams’ approach to container
security. These processes should help dictate the
vast majority of security decisions made in the
environment, including but not limited to: Approved
sources for container base images, standards, and
schedules against which to perform vulnerability
scans (both for images and running containers),
and SIEM/SOC use-cases for suspicious container
activities. Deloitte enables organizations to create
these processes, map them into technical controls,
and implement them via automation.

Trusted Container
Image

Image Vulnerability
Scanner (Amazon

Inspector)

Image Vulnerability
Scanner

(Amazon Inspector)

Central Base Image
Repository (Amazon

ECR)

Container Image
Registry

(Amazon ECR)

Trusted Base Image

Docker
Registry

3rd party
souce

Docker Content Trust
Container Signing

Container
Image

Proceed with
Caution

Kubernetes
Cluster

(Amazon EKS)

Base Image

Signed Trusted
Container Image

Not recomended

Not recomended

Policy and Security Automation using AWS Control Tower

6

should be enforced through Kubernetes RBAC and
mapped back to roles in AWS Identity & Access
Management (IAM). Kubernetes RBAC grants
permissions at the namespace and cluster level,
allowing for identity-based segmentation and
restricting critical clusters. By mapping the cluster
/ namespace level permissions with AWS IAM roles,
security engineers can help limit overlapping or
conflicting permissions. Also at the Kubernetes API
server, policy can manifest as Kubernetes admission
control. Admission control can act as a last line of
defense on the clusters, restricting specific actions
from being performed across the cluster. Because
the API server is used for administrative commands,
it is vital to have policy that can help block certain
disruptive or destructive actions at this layer.
Oftentimes, organizations will use OPA here and can
even implement a central policy engine to control
the various layers of policy from a single graphical
user interface (GUI). Policy can also help protect
traffic internal to the Kubernetes environment, by
way of a service mesh tool. AWS AppMesh, AWS’s
native service mesh tool, offers numerous features
to help secure container environments, such as
encrypted service-to-service communication,
traffic management, and authorization policies.
AppMesh also has authorization policies that can
be enforced on the pod-to-pod traffic as an extra
layer of security. Using a service mesh solution
can help to significantly enhance the security
of the microservices architecture by encrypting
service-to-service communication and enforcing
authorization policies on traffic. Finally, advanced
organizations often leverage Kubernetes admission
control. This can be an effective solution to help
limit unauthorized activity for containers, both from
outside attackers and insider threat.

points in the container image lifecycle. Firstly, by
establishing operational processes that mandate
frequent image rebuilds and base image updates,
organizations can potentially limit the existence
of stale images that can be deployed. Additionally,
policy can be applied at the image registry level
(see the Elastic Container Registries (ECRs) in Figure
3 below) that expire an image upon the build of
a new version. As a final check, runtime scanning
policy can be applied to detect if containers are
running outdated software packages from stale
images and trigger an alert to decommission that
image and container. Ultimately, to combat common
edge cases such as this one described, organizations
should build policy, automation, and operational
processes that can help detect and respond to
vulnerabilities.

3. Runtime security: As containers run, they
are subject to attacks and vulnerabilities that
are exposed over time. For example, software
packages running inside the container could be
exploited as part of a supply chain attack. The
attack would ultimately cause the container to
exhibit anomalous behavior. To mitigate these
types of threats, organizations should consider
employing vulnerability scans using tools such as
AWS GuardDuty, logging & monitoring via Security
Information & Event Management (SIEM) and
dashboarding solutions, and incident response
services such as Amazon Inspector and Detective,
among others. AWS has recently announced the
integration of EKS audit logs into Amazon Detective,
which has made it possible to view end-to-end
container kill chains through a single pane of glass.
Additionally, AWS recently evolved GuardDuty
to perform container runtime scanning natively,
without the need for procuring a third-party tool
and managing external agents. Having this level of
visibility into container environments is imperative
to be able to help stop attacks before they spread.

4. Policy Enforcement: It is important that container
policy be enforced in a layered approach across
build-time, runtime, and operationalization.
First and foremost, container policy should be
embedded into the CI/CD pipeline to help mitigate
the risk of vulnerable containers being deployed.
Additionally, container policy should be present in
the authentication and authorization flows for the
Kubernetes environment, happening at the API
server (also known as, Kubernetes management
plane, orchestrator layer). Here, authorization

Policy and Security Automation using AWS Control Tower

7

A strong differentiator of Deloitte’s approach,
however, is its focus on operational process maturity.
The approach helps organizations build and map
requirements, policies, and controls to easily integrate
security into the container development lifecycle. The
result is a self-sustaining process, wherein developers
are empowered to prioritize security in order to
accelerate their builds. The result is a significant
reduction in deployment times and introduces the
added benefit of increased bandwidth for the majority
of the security organization. SOC analysts will have
fewer alerts to respond to, allowing them to focus
on shortening their incident response times and
maintaining the integrity of the environment.

As the threat landscape around container security
continuously evolves, exploring solutions in the
market to address threats and scale across enterprise
environments is a cumbersome and perpetual task.
For that reason, it’s often advantageous to deploy
cloud native security tooling offered by AWS, developed
by gathering threat intelligence from various AWS
customers and identifying common exploits and
mitigations. Many of these findings are built into Amazon
GuardDuty, which now offers AWS-native runtime
scanning, and common investigation patterns have
inspired the recent integration of EKS audit logs into
Amazon Detective. By maintaining an active partnership
with AWS, Deloitte continuously updates its container
security threat model, as well as integrates mitigation
and investigation patterns that AWS recognizes as
leading practices.

AWS has thoughtfully put together a suite of services
that can help advance organizations’ container security
posture. These services are backed by AWS’s SLAs
and provide organizations with a cloud-native way to
reduce container risks. For organizations that prefer
a mix of cloud-native and third-party tools, AWS’s
container security solution suite integrates with third-
party technologies, allowing for organizations to build
the container security toolset that better fits their
circumstances.

Solution Benefits

8

Policy and Security Automation using AWS Control Tower

Conclusion
When approaching container security,
it is crucial to have a strong container
security strategy as a base, upon which
development controls and implementations
are built. The strategy should work towards
being simultaneously (1) threat-centric, (2)
encompassing of the end-to-end container
lifecycle, and (3) able to integrate effortlessly
into the container developer experience. By
leveraging the container threat intelligence
performed by AWS, organizations can
potentially track the most up-to-date threats
and build strategies around mitigating them.
Then, by building their strategy around
AWS’s container security suite and focusing
on operational processes, Build-time
Security, Runtime Security and Container
Policy Enforcement, organizations can help
mitigate threats across their end-to-end
container lifecycles. Finally, by prioritizing
automation and operational processes,
organizations can empower developers
to adopt security controls upstream of
traditional security reviews. The result is that
organizations who use a similar container
security approach feel secure and ready to
embrace the benefits that containers have
to offer.

For more information on Deloitte’s
Container Security offerings and to learn
how to design an effective Container
Security Strategy at your organization, reach
out to the authors below.

9

Authors
Aaron Brown

Deloitte & Touche, LLP
Partner, Cyber Risk Services
AWS Alliance Leader

aaronbrown@deloitte.com

Samuel Sharon

Deloitte & Touche, LLP Senior
Consultant, Cyber Risk Services
Container Security Specialist

sasharon@deloitte.com

Neel Potnis

Deloitte & Touche, LLP
Consultant, Cyber Risk Services
AWS Security Architect

npotnis@deloitte.com

Ravi Dhaval

Deloitte & Touche, LLP Senior
Manager, Cyber Risk Services AWS
Practice and Innovation Lead

rdhaval@deloitte.com

Karan Mahajan

Deloitte & Touche, LLP Senior
Manager, Cyber Risk Services
Container Security Lead

karmahajan@deloitte.com

Policy and Security Automation using AWS Control Tower

Special Thanks
Steve Bollers (for his technical review and insights)

Amazon Web Services

Senior Partner Solutions Architect, Cybersecurity

Jeff Kaiserman (for his technical review and insights)

Amazon Web Services

Principal Security Partner Solutions Architect

mailto:aaronbrown%40deloitte.com?subject=aaronbrown%40deloitte.com
mailto:sasharon%40deloitte.com?subject=sasharon%40deloitte.com
mailto:npotnis%40deloitte.com?subject=npotnis%40deloitte.com
mailto:rdhaval%40deloitte.com?subject=rdhaval%40deloitte.com
mailto:karmahajan%40deloitte.com?subject=karmahajan%40deloitte.com

About Deloitte
Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company limited by
guarantee (“DTTL”), its network of member firms, and their related entities. DTTL and each of its member
firms are legally separate and independent entities. DTTL (also referred to as “Deloitte Global”) does not
provide services to clients. In the United States, Deloitte refers to one or more of the US member firms of
DTTL, their related entities that operate using the “Deloitte” name in the United States and their respective
affiliates. Certain services may not be available to attest clients under the rules and regulations of public
accounting. Please see www.deloitte.com/about to learn more about our global network of member firms.

Copyright © 2023 Deloitte Development LLC. All rights reserved.

Designed by CoRe Creative Services. RITM1396170

	What is Zero Trust?
	Palo Alto Networks: A leader in the Zero Trust technology space
	Trust in your ability to change

