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Abstract—Fraud in healthcare services and claims poses a
significant threat to healthcare expenditure, accessibility to health
services, and quality of care of members. One important type of
member-provider collusion is where members travel unreason-
able distances seeking healthcare services. Such activities could be
indicators of “pill mills”, doctor shopping, or referral kickback
schemes. Previous research on the identification of suspicious
travel distances have focused mostly on the billed amount and
considered select diagnosis conditions and travel distances at zip
code or county levels. Compared to these studies, our proposed
framework focuses on claims across various diagnoses and takes
into account population densities of members’ zip codes, and
provider densities for various specialties, among other features,
which are critical to the prediction of travel distances. We exper-
iment with two approaches – i) a regression model paired with a
statistical anomalous distance detector, and ii) a neural network-
based model paired with a likelihood estimator for anomalous
distance detection. The evaluation of these models on a manually
annotated dataset shows that the second approach outperforms
the first one in identifying anomalous travel distances.

Index Terms—Geographic Information Systems, GIS, Machine
Learning, Neural Networks, Anomaly Detection

I. INTRODUCTION

Medicare and Medicaid are two US Federal health insurance

programs for those who are elderly or disabled and those who

have very low income, respectively. According to the Centers

for Medicare & Medicaid Services (CMS)1, as of June 2021,

the total number of enrollees in Medicare was over 63 million

while for Medicaid it was over 75 million. The National Health

Expenditure was over $4 trillion in 2020 which accounted

for nearly 20% of the US Gross Domestic Product2 and is

estimated to reach over $6 trillion by 2028. The National

Health Care Anti-Fraud Association estimates that 3% to 10%

of total healthcare expenditures are lost to healthcare fraud3

which conservatively amounts to over $100 billion. Healthcare

fraud manifests in various forms [1]–[3], ranging from identity

theft and using services under another member’s name, to

1https://www.cms.gov/newsroom/news-alert/cms-releases-latest-
enrollment-figures-medicare-medicaid-and-childrens-health-insurance-
program-chip

2https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-
Trends-and-Reports/NationalHealthExpendData/NHE-Fact-Sheet

3https://www.nhcaa.org/tools-insights/about-health-care-fraud/the-
challenge-of-health-care-fraud/

providers billing for unadministered services and pharmacists

running “pill mills”. Such fraud has negative consequences

not just on healthcare expenditure but also on accessibility

and reach of health services, and quality of care of members.

In this paper we focus on an important subset of member-

provider collusions that result in members seeking healthcare

providers at unreasonable distances from their homes. Exam-

ples of fraud schemes that tend to exhibit distance anoma-

lies are “pill mills”, doctor shopping, and referral kickback

schemes for Durable Medical Equipments (DME). Referral

kickback schemes are when doctors receive incentives such

as money or gifts in exchange for remote patient referrals

to receive DMEs (e.g., wheelchairs, prosthetic inserts) [4].

“Pill mills” are when healthcare providers and their staff

are willing to accommodate or encourage members’ drug

use by prescribing the drugs (typically opioids) to help treat

exaggerated or nonexistent symptoms [5]. Doctor shopping is

when individuals travel from doctor to doctor often posing as

out-of-town visitors until they find select drug prescriptions,

duplicate prescriptions, or preference for treatments that are

not within normal treatment guidelines [6]. “Pill mills” and

doctor shopping contribute significantly to drug diversion,

costing an estimated $72.5 billion annually4.

All three of the above schemes tend to favor longer distances

between members and providers and we’d expect them to show

up as distance anomalies with members traveling exceedingly

long distances to see providers. However, there are many

legitimate reasons why members may need to travel long

distances to see a medical provider. For example, members

may need to see a specialist for procedures that are rarer

and not commonly available, or members may live in rural or

underserved areas and may need to travel longer distances even

for more routine visits. A member may also need emergency

medical care while far from home. Some members may

assume higher quality of care from certain providers and hence

travel further than usual. Many of these factors could indeed

play a critical role in distances traveled by beneficiaries; but

similar to [7], [8], we assume that these cases are either

unobservable (e.g., member’s assumption of quality of care)

4https://insurancefraud.org/wp-content/uploads/drugDiversion.pdf
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or extremely rare (e.g., non-emergency health services during

travels). The methodologies we consider ideally condition

what we expect to be an unreasonable distance based on the

information from three primary sources – members, providers,

and claims. Our overall objective is not to fully automate travel

distance-based fraud identification but to flag high risk claims

to fraud investigators for further review and determination of

actual fraud.

To this end, we discuss two approaches for the identi-

fication of suspicious travel distances in healthcare claims.

In the first approach, we build regression models to predict

travel distances, which are then used in a statistical model

over residuals (i.e. difference between actual and predicted

distances) to identify suspicious travel distances. In the second

approach, we use Mixture Density Network (MDN) [9], a

neural network-based approach, to output parameters of a

probability density function (PDF) which approximates the

underlying data distribution. The PDF is then used to com-

pute the likelihood of a distance being an outlier. For both

approaches we consider various claim-based features, such

as diagnosis codes and provider specialty; census tract data,

such as population density and average household income;

and other data-driven derived features, such as density of

providers with certain specialty in a certain geolocation. Using

manually labeled data for model evaluation, we demonstrate

the feasibility of our approaches in identifying suspicious

travel distances.

We make several novel contributions in this paper. First, we

experiment with a novel modeling approach which uses the

MDN architecture with a Gamma distribution to approximate

the underlying data distribution, which is in turn used to iden-

tify outlier travel distances. Second, while most comparable

studies primarily focus on features such as payment amount

and distance traveled, we employ a more extensive set of

features that includes member, provider, claim, and census-

level attributes. Lastly, in contrast to prior studies, our method

is not limited to particular diagnostic conditions.

The rest of the paper is structured as follows: Section II

covers related research, and Section III delves into the problem

definition, data, and methods. Our findings are presented in

Section IV, followed by discussions and conclusions in Section

V.

II. RELATED RESEARCH

Musal [7] identified the expected quality of care from a

provider, and the distance between a provider and beneficiary

as two primary attributes a beneficiary considers in choosing

of a provider. Since the expected quality of care from the

perspective of a beneficiary cannot be observed, the paper pro-

posed a method for identifying potentially fraudulent providers

where members may be traveling impractical distances to re-

ceive healthcare services. The authors focused on beneficiaries

residing in a Metropolitan Statistical Areas (MSA) and flagged

providers when more than 10% of their beneficiaries traveled

over a 99 percentile distance threshold, or their earnings are

skewed toward beneficiaries who traveled over certain pre-

defined distance brackets. In contrast, our approach is more

general as it considers not only MSAs but also rural areas,

and distances at a higher resolution between beneficiaries and

providers compared to zip codes in [7].

Using CMS’ anonymized claims data from 2010 Liu and

Vasarhelyi [8] built a model to predict geo-location-based

fraud. Since the exact address information for beneficiaries and

providers were not available, latitudes and longitudes of county

and state centroids were used to measure beneficiary-provider

Euclidean distance. With a focus on select medical conditions

(such as pneumonia, rehabilitation services, and septicemia)

and payment amounts, clusters were created to identify claims

with reasonable vs unreasonable travel distances and payment

amounts. The general principle of defining outlier travel dis-

tances is similar to [7], and suffers from the same drawbacks

stated above.

The Xerox Program Integrity Validator [10] featured various

graph analysis techniques to identify fraud, waste and abuse

(FWA) in real-world healthcare datasets. The authors leveraged

an ego-net graph approach to identify anomalous geo-spatial

relationships. Specifically, they computed the geographical

distance between physician and pharmacy pairs, and derived

an empirical cumulative distribution function (cdf). Then they

applied a density-based clustering algorithm (DBSCAN) to the

cdf to define a baseline. Cdfs that are similar to each other are

clustered together while those that deviate significantly from

the norm are flagged as anomalous. This approach of only

considering the cdfs of the distances, and clustering based on

cdfs assumes that deviations from the norm of provider prox-

imities is the only factor that can be used to identify anomalies.

This study did not consider factors such as population density

and provider density of a particular specialty, which may play

a critical role in distance traveled. Also, this study focused

only on distances between physician-pharmacy pairs whereas

we consider distances between beneficiary-provider pairs at a

claim level.

Rosenblum et al. [11] examined commuting patterns of over

twenty thousand methadone members enrolled in 84 opioid

treatment programs. While the majority of members traveled

<10 miles, 8% of members traveled across state borders. Using

a multivariate model, the authors found that the factors most

significantly associated with travel distances were whether

they resided in the Southeast or Midwest, low urbanicity,

certain demographic factors, prescription opioid abuse, and

heroin usage patterns. There are various assumptions made in

the modeling approach adopted in this study. The multivariate

mixed-effects model assumes linearity between the features

and response variable as well as considers various assump-

tions on the random effects which may not apply to a large

heterogeneous real-world dataset like ours.

In a recent paper [12] Chen et al. focused on the com-

plex interactivity of various members, provider, and inci-

dent features that goes into prediction of travel distances of

members to access healthcare. In contrast to conventional

statistical and econometrics approaches that may not consider
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confounding variables and only apply to balanced label sam-

pling approaches, the authors proposed a convolutional neural

network-based approach to predict travel distances. Specifi-

cally, they focused on members with respiratory infections,

flu, or needing emergency services, and predicted whether they

will travel for <5 km, 5-10 km, 10-15 km or >15 km. Com-

pared to [12], our approach has a few advantages. First, this

study categorizes distances into four levels, suggesting a clas-

sification approach for predicting travel distances. Although

this might be suitable for addressing healthcare access, such

a broad categorization could result imprecise predictions in a

healthcare FWA context. Therefore, we concentrate on more

granular modeling approaches, such as regression models.

Second, we consider the full sample population of a client state

Medicare/Medicaid members instead of focusing on particular

conditions. Third, while the authors propose that bucketing

the distance traveled leads to a more generalized solution,

some obvious drawbacks are sizes of each bucket, number

of buckets, etc. And finally, the provider-member distances

are only approximations since they were calculated based on

centroids of districts of providers and members, and suffers

from similar drawbacks as the aforementioned studies.

III. PROBLEM DEFINITION, DATA AND METHODS

A. Problem Definition

We propose two approaches to identify anomalous travel

distances. For the first approach, we build a regression model

to predict travel distances given claims data, census data, and

data-derived features, such as provider density. The difference

between actual and predicted values are used to compute

residuals to generate a truncated normal cdf. The cdf is

then used to calculate whether certain distances are normal

or anomalous. For the second approach, we use a MDN

to approximate the underlying data distribution and compute

parameters of a PDF, which is then used to identify anomalous

travel distances.

While unsupervised machine learning methods such as

clustering or autoencoders are often applied for anomaly

detection [13], [14], there are various challenges in applying

them to very high dimensional data like ours. Clustering in

high dimensional data often leads to objects being nearly

equidistant from each other, completely masking individual

clusters [15]. While there are alternatives such as feature

selection, dimensionality reduction and subspace clustering

[16], they often involve either manual parameter selections that

are challenging, or force sub-optimal model-driven parameter

selection [17]. Other methods such as autoencoders, which

learn some low-dimensional representation space from which

input data can be well reconstructed, are biased by presence

of outliers and infrequent regularities in the training data [14].

In contrast, our proposed probabilistic methods offer several

advantages, including the ability to quantify uncertainly in

predictions, robustness to outliers, and the capability for end-

to-end training.

B. Dataset for Model Training

1) Claims: In the state Medicare/Medicaid dataset we use,

each claim typically contains information about members

(member id, address, demographics, etc.); providers (National

Provider Identifier (NPI) id5, practice address, specialty, etc.);

details of diagnosis (in the form of International Classification

of Diseases (ICD-10-CM) codes6); procedures (in the form

of Current Procedural Terminology (CPT) codes7); quali-

fiers/modifiers; billed amount; etc. Due to sparsity of provider

practice addresses in our dataset we use the NPI registry to

identify missing addresses. Since the NPI registry is frequently

updated and provider practice addresses may change over time,

to ensure data quality we limit our analysis to claims since

January, 2021. We also filter out claims that are labeled as

void or invalid, has $0 billed, provider is locum tenens8, or

has invalid addresses of members or providers (e.g., zip codes:

00000/9999, PO Box addresses).

Besides these claim-level features, we also derive an ad-

ditional feature to account for members’ accessibility of

providers of various specialties. Since we have access to the

full state Medicare/Medicaid data, we can estimate provider

density within N square miles of a member. As we discuss

later, the median travel distance of members is around 30 miles

so we calculate the provider density of specialties within 30

square miles of a member’s address.

The complete dataset comprises of over 40 million claims

with 48,570 distinct providers and 1.7 million distinct mem-

bers. Applying the filters described above resulted in a dataset

of 379,009 claims with 29,790 providers and 268,980 mem-

bers. The top 5 most frequent ICD-10-CM categories in our

dataset are: R69: Illness, unspecified, F41: Other anxiety dis-

orders, F11: Opioid related disorders, F33: Major depressive

disorder, recurrent, and F43: Reaction to severe stress, and

adjustment disorders. In this dataset, provider specialty is

coded using a 10-character code that designates type and clas-

sification. The top 5 most frequent physician taxonomy codes

are: 282N00000X: Hospitals/ General Acute Care Hospital,

2084P0800X: Allopathic & Osteopathic Physicians/ Psychia-

try, 363LF0000X: Physician Assistants & Advanced Practice

Nursing Providers/ Nurse Practitioner, Family, 207Q00000X:

Allopathic & Osteopathic Physicians/ Family Medicine, and

2085R0202X: Allopathic & Osteopathic Physicians/ Radiol-

ogy, Diagnostic Radiology.
2) Census: While claims data provides us with details

related to members’ diagnoses and treatments, their addresses

and properties related to their addresses may play an important

role in their travel distances. As discussed before, members in

rural areas may tend to travel longer for the same diagno-

sis compared to someone in an urban area. Members from

wealthier neighborhoods may travel for longer distances to

seek better quality of care compared to those from poorer

5https://npiregistry.cms.hhs.gov/
6https://www.cdc.gov/nchs/icd/icd-10-cm.htm
7https://www.ama-assn.org/amaone/cpt-current-procedural-terminology
8A provider working temporarily from another practice which could be in

a different city or state from where they primarily work.
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neighborhoods [18]. We use the 2020 US Census data9 to get

zip-code level information on overall population, population

density, land area, number of occupied housing units, average

home value, and average household income.
In our analysis of the census data, we find that the total

number of unique zip-codes in our dataset is 1,450. The

minimum population in a zip-code is 64 while the maximum

is 105,549. The median average household income is $47,080,

while the minimum is $2,499 and maximum is $160,631.
As model inputs, all numerical features (e.g., provider

density, population density, etc.) are represented as they are,

except for long-tailed distributions (e.g., average household

income), which are log-transformed. Categorical features, such

as diagnoses codes and provider specialty, are one-hot or

multi-hot encoded.
3) Distance Traveled: Given the sensitive nature of member

addresses, similar to [19], we derive the distance traveled

between members and providers in multiple steps using offline

maps data. First, we convert the addresses of members and

providers to approximate latitudes and longitudes using Open

Street Map (OSM) [20]. We then use the A* graph traversal

algorithm [21] on OSM data to identify the optimal route – a

set of nodes with corresponding latitude and longitude in the

OSM graph. For each pair of OSM nodes, we calculate the

distance using the Haversine formula [22] which are summed

up to get the total distance between two addresses. The

Haversine formula is used to calculate the distance between

two points on the Earth’s surface given their latitude and

longitude.
Analysis of the travel distances between members and

providers show that the minimum distance is 0 miles, while the

median travel distance is around 30 miles, and the maximum

distance is 7436 miles. Around 15% of claims have travel

distances exceeding 100 miles.

C. Modeling Approaches
Since the dataset was not labeled with anomalous travel dis-

tances, we experimented with 2 semi-supervised approaches.
1) Approach 1: Travel Distance Prediction and Statistical

Modeling for Anomalous Distance Detection: In the first

approach, using features from claims data – which includes

information about members, providers, and individual claims,

and census data – which includes information on various geo-

spatial and socio-economic features, we build regression mod-

els to predict the log transformed value of distance traveled.

We then use statistical models to identify anomalous travel

distances. An overview of our approach is shown in Fig 1

with details in the following sections.
a) Travel Distance Prediction: We experimented with

various tree- and neural network-based regression models

to predict travel distances. Below we present the hyper-

parameters used in these models which were tuned using

random search [23] of the hyper-parameter space.
Random Forest A Random Forest regression model uses an

ensemble of decision trees to predict travel distances. We use

9https://data.census.gov/

Fig. 1. Overview of Anomalous Travel Distance Identification

Framework

this as a baseline with the number of trees = 100, maximum

depth of trees = 8, number of features to consider for the best

split = 0.1, with other parameters being default as defined in

[24].

Extreme Gradient Boosting (XGBoost) We use a gradient

boosting regression model, specifically XGBoost, which is an

ensemble learning technique that combines the predictions of

several weak learners like decision trees. It has been shown to

perform well on data similar to ours. Here the optimal hyper-

parameters are: number of gradient boosted trees/number of

boosting rounds = 565, L1 regularization (alpha) = 0.396,

L2 regularization (lambda) = 0.592, learning rate = 0.05, the

number of nodes in the tree = 9, subsample ratio of columns

when constructing each tree = 0.65, minimum loss reduction

for tree partitioning = 3.14, minimum sum if instance weight

needed in a child = 7, subsample ratio of training instances

to prevent overfitting = 0.5, tree construction method = exact

greedy algorithm, and other parameters are default as defined

in [25].

TabNet TabNet [26] deviates from the above tree-based

methods and uses sparse attention in a series of steps to

model the output. The TabNet encoder comprises of a feature

transformer, an attentive transformer and feature masking,

while the decoder is composed of a feature transformer block

in each step. Compared to other deep learning methods for

instance-wise feature selection methods, TabNet uses a single

deep learning architecture for feature selection and reasoning.

TabNet is shown to outperform or on par with other tabular

learning models on various benchmark datasets [26]. We use
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the default parameters values recommended in the paper for a

regression task.
Neural Oblivious Decision Ensembles (NODE) NODE

[27] uses neural equivalent of oblivious trees (like CatBoost

trees [28]) as basis of architecture but benefits from end-to-end

gradient optimization and multi-layer hierarchical representa-

tion learning. Across a large number of benchmark datasets

NODE is shown to outperform other gradient boosted tree

based methods [27]. In our model we set the number of

oblivious decision tree layers to 8, number of trees to 128,

embedding dropout of 0, with other parameters set to the

recommended values from the paper.
Each of these models are trained on the dataset described

in Section III(B). 80% of the data is used for training and the

remaining 20% holdout data is used for testing.
b) Statistical Modeling for Anomalous Distance Detec-

tion: To identify and prioritize suspicious claims for further

investigation, we quantify the risk of each claim using a

statistical model on top of residuals from the regression

models. For a given data point, the steps involved in this

process are:

1) Calculate residuals (difference between actual and pre-

dicted distance) of the regression model.

2) Create log-transformed distribution of the residuals to

reduce the skewness of the data.

3) Calculate the z-score from the log transformed residuals

as below:

z-score = (residual − μ)/σ
where μ and σ are the mean and standard deviation of

the log-transformed residual distribution.

4) Calculate probability (p) of each claim being an outlier

using a truncated normal distribution. The truncated nor-

mal distribution is derived from a normally distributed

random variable by imposing upper or lower bounds (or

both) on the range of the random variable [29]. In our

case, we only consider one tail of the distribution. We

apply an identify function which assigns 0 to all negative

residual cases. The formula is:

p =
ϕ(μ,δ;zscore)−ϕ(μ,δ;zcutoff )
ϕ(μ,δ;∞)− ϕ(μ,δ;zcutoff )

∗ Iresidual
where ϕ (μ, δ;x) is the cdf function of the normal

distribution; and

Iresidual =

{
0 residual < 0

1 residual ≥ 0

2) Approach 2: Anomalous Travel Distance Prediction Us-
ing MDN and PDF: In the second approach, instead of

predicting the log transformed value of distance traveled, we

use MDN [9] to predict the key parameters (such as mixing

coefficient, μ and θ) that approximate the underlying distance

data distribution. A MDN comprises of a neural network and a

mixture model, where the neural network is an encoder to learn

feature representations of the input, while the mixture model

is a probability distribution that combines the weighted sum of

multiple simpler distributions. The network is trained end-to-

end while minimizing the negative log-likelihood. The output

TABLE I. Performance Metrics of Travel Distance Prediction

Models

Models MAE RMSE MAPE R2R2R2

Random Forest 1.04 1.47 2.68 0.33
XGBoost 0.89 1.13 1.67 0.60
TabNet 1.09 1.59 2.94 0.21
NODE 1.01 1.42 2.29 0.37

parameters of MDN define component PDFs in a mixture.

Given a new data point, a trained MDN can be used to compute

the likelihood of observing it under the learned mixture model

and a p-value is computed. The significance level denoted by

the alpha (α) is set at 0.05 and p-values of data points below

this threshold are considered outliers.

Our MDN architecture comprises of 2 layers with 256

nodes in each layer, a dropout of 0.2, kaiming initialization,

hyperbolic tangent activation function, and with batch nor-

malization. Typically, MDNs consider a mixture model that

comprises of multiple Gaussian distributions. However, in our

case, the underlying distribution of the training data fits a

Gamma distribution i.e. the data is positively skewed where

there is a long tail of high values. Therefore, we train the

MDN on both Gaussian (MDN-Gaussian) and Gamma (MDN-

Gamma) mixture models. Based on hyper-parameter tuning we

find optimal performance when the number of components in

the mixture is 1.

D. Manually Annotated Dataset for Model Evaluation

Since labels for anomalous distances were unavailable, we

create a manually annotated dataset for evaluation of models

outlined in Approaches 1 and 2. We use stratified sampling

on model results from both of the aforementioned approaches

to get 438 records. To ensure that the sampling is not biased

towards a specific model’s output, we conduct three rounds of

independent sampling. In each round, we do stratified sam-

pling from a different model’s output. A Program Integrity10

subject matter specialist (SMS) performed a blinded reviewed

of each record to classify the travel distances as normal or

anomalous based on claim, census and data-derived features

(as described in Section III(B)). This manually annotated

dataset contains 22.8% anomalies and 77.2% normal data,

which align with our assumptions that in a real-world scenario

anomalies are a minority.

IV. EXPERIMENTAL RESULTS

A. Results from Approach 1: Travel Distance Prediction
Model and Statistical Modeling for Anomalous Distance De-
tection

We present results of the regression model for travel dis-

tance prediction on the holdout test dataset. For the statistical

anomalous distance detection model we perform evaluation on

the manually annotated dataset. Performance metrics on the

holdout test dataset for the 4 models (namely Random Forest,

XGBoost, TabNet, and NODE) used for prediction of travel

10https://www.medicaid.gov/medicaid/program-integrity/index.html
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Fig. 2. Density Plots of Travel Distance Prediction Models

distances are shown in Table I. We use Mean Absolute Error

(MAE), Root Mean Square Error (RMSE), Mean Absolute

Percentage Error (MAPE) and coefficient of determination

(R2) as performance metrics. For MAE, RMSE, and MAPE,

lower values are better as they indicate smaller errors and

better predictive performance, while for (R2) higher values

are better. The results indicate that the XGBoost model outper-

forms all other models in all metrics with MAE of 0.89, RMSE

of 1.13, MAPE of 1.67, and R2 of 0.6. The Random Forest

regressor significantly lags behind the XGBoost regressor in

performance. We speculate that that the high dimensionality

of our feature space and the intricate non-linear relationships

in the data are effectively captured by XGBoost, but not by

the Random Forest model. Results for NODE are trailing

XGBoost but better than other models across all metrics.

We also plot the density function for each model’s results

against the actual distance traveled (Fig 2). Similar to our

observations from Table I, we find that the XGBoost model

overlap the most with the original distribution compared to

other models. We also notice that XGBoost predictions are

more concentrated around the median compared to the actual

distance distribution. This aligns with our target to identify

suspicious records and lower false positive rates. Other models

such as TabNet and Random Forest tend to underestimate the

travel distances, which may lead to a high false positive rate.

Analysis of the feature importance of the XGBoost model

shows that specialty of providers and diagnosis information in

claims are key features. A majority of prominent features are

associated with laboratories, medical suppliers, and nursing

facilities. This is aligned with our expectations as well as pre-

vious studies on factors influencing travel distances [11]. For

TABLE II. Performance Metrics of Approach 1: Statistical

Modeling for Anomalous Distance Detection

Models Precision Recall F1- score
Random Forest 0.69 0.77 0.73
XGBoost 0.84 0.74 0.79
TabNet 0.70 0.78 0.74
NODE 0.80 0.81 0.80

example, patients generally prefer going to nursing facilities

that are closer to their residence. However, for certain specialty

lab tests, members may have to travel for above average travel

distances.

The outputs from the regression models are further analyzed

to identify anomalous travel distances. While the XGBoost

regression model fit the data quite well, it may also have

higher risk of over-fitting on outlier distances. Therefore,

instead of using thresholds on the model predictions, we use

the residuals from each model described earlier, and identify

anomalous travel distances, as described in Section III(C)(2).

Table II shows the performance metrics of the models on the

manually annotated evaluation dataset (Section III(D)) using

classification metrics – precision, recall, and F1-score. We find

that NODE outperforms other models in recall (0.81) and F1-

score (0.80), and closely behind XGBoost in Precision.

B. Results from Approach 2: Anomalous Travel Distance
Prediction Using MDN and PDF

For both MDN-Gamma and MDN-Gaussian models, we

calculate p-value of each record in the manually annotated

evaluation dataset using the predicted PDFs.
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TABLE III. Performance Metrics of Approach 2: Anomalous

Travel Distance Prediction Using MDN and PDF

Models Precision Recall F1- score
MDN-Gamma 0.80 0.82 0.81
MDN-Gaussian 0.78 0.53 0.63

Fig. 3. Distribution of Risk Scores from the MDN Models

Table III shows the performance metrics of these models

using precision, recall, and F1-score. We find that the MDN-

Gamma model outperforms the MDN-Gaussian model with

precision of 0.80, recall of 0.82, and F1-score of 0.81.

Across both approaches (Tables II and III), we find that

MDN-Gamma outperforms other methods with F1-score of

0.81, closely followed by NODE with F1-score of 0.80.

Although XGBoost has a higher precision compared to these

models, it produces more false negatives and hence a lower

recall. When comparing MDN-Gamma with MDN-Gaussian

(Fig 3), we observe that MDN-Gamma more effectively dis-

tinguishes anomalous records from normal ones. Over 90%

outliers are assigned a risk score ( 1
1+p-value

such that smaller

p-values are closer to 1) higher than 0.6 by MDN-Gamma.

While these results are on a relatively small manually labeled

dataset, they are promising.

V. CONCLUSIONS

In this paper we propose two approaches for identification

of high risk claims based on travel distances between members

and providers, taking into account various aspects of claims,

members, providers and census data, as well as other data-

driven features. A neural network-based approach paired with

a probabilistic outlier detection technique is able to predict

anomalous travel distances with good results compared to

other semi-supervised approaches. An example of such high

risk claim in our data is when a member requiring interven-

tional pain management travels for almost 700 miles to seek

services from an out-of-state provider. Another such example

is when a member requiring mental health services due to

opioids travels for 950 miles to see a physician assistance spe-

cializing in Gastroenterology. Models for detecting healthcare

FWA, like the one presented in this paper, are often employed

in post-payment scenarios to identify high-risk claims that

require additional scrutiny by Program Integrity SMSs and

investigators. The primary goal is not just to detect FWA but

to deter it, creating a healthcare system that’s more efficient,

trustworthy, and cost-effective.

In future, we would like to explore the temporal nature of

claims that are at high risk for travel distances. We would also

like to explore through graph analytics-based methods whether

there are clusters of providers who share similar risk profiles

for these high risk claims.
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