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Abstract—Command and control (C2) paths for issuing com-
mands to malware are sometimes the only indicators of its exis-
tence within networks. Identifying potential C2 channels is often
a manually driven process that involves a deep understanding of
cyber tradecraft. Efforts to improve discovery of these channels
through using a reinforcement learning (RL) based approach that
learns to automatically carry out C2 attack campaigns on large
networks, where multiple defense layers are in place serves to
drive efficiency for network operators. In this paper, we model C2
traffic flow as a three-stage process and formulate it as a Markov
decision process (MDP) with the objective to maximize the
number of valuable hosts whose data is exfiltrated. The approach
also specifically models payload and defense mechanisms such as
firewalls which is a novel contribution. The attack paths learned
by the RL agent can in turn help the blue team identify high-
priority vulnerabilities and develop improved defense strategies.
The method is evaluated on a large network with more than a
thousand hosts and the results demonstrate that the agent can
effectively learn attack paths while avoiding firewalls.

Index Terms—attack graphs, reinforcement learning, RL, com-
mand and control, C2, cyber defense, cyber network operations,
cyber terrain

I. INTRODUCTION

A command and control (C2) channel is made up of at
least one path in a network that is designated for traffic flow
consisting of commands from deployed malware to C2 server
infrastructure 1. As signature-less malware, i.e. zero days, may
evade detection by deployed countermeasures (e.g. endpoint
detection and response, intrusion detection systems, intrusion
prevention systems), the awareness of the C2 paths to deliver
(operational) commands are sometimes the only indicators of
malware within a network. Sophisticated cyber actors that
operate as advanced persistent threats (APT) carefully architect
these C2 channels within networks to avoid detection for this
reason and to perpetuate long term footholds within networks
for a variety of purposes [1].

1C2 infrastructure is made up of those servers that adversaries use to issue
commands to deployed malware.

This paper builds on previous work [2]–[5] where re-
inforcement learning (RL) approaches were integrated with
cyber terrain concepts [6]. At the time of this writing, this
work on C2 pathway discovery is known to be the first RL
study to identify C2 channels within networks. The benefit of
this work is to efficiently support and inform red (offense),
blue (defense), and purple (integrated offense-defense) team
operators on both offensive and defensive measures that could
be implemented in support of discovering where possible C2
channels could exist.

Instead of training a classifier to detect the presence of
anomalous C2 traffic, this study attempts to examine how
C2 paths may be formulated within large networks using
reinforcement learning. Identifying potential attack pathways
on large networks is usually a very time consuming process
when done manually. RL presents a viable option to automate
this process through trial and error. By playing a red team role
(i.e., offense), a trained RL agent can help discover vulnerable
nodes in the network and suspicious activities, thereby helping
the blue team (i.e., defense) develop plans to enhance, refine,
or improve an organization’s security posture.

Our contributions are as follows. First, we develop a de-
tailed reinforcement learning model that takes into account
cyber defense terrain for multi-stage C2 attacks. Second, we
demonstrate that our RL model can effectively identify attack
paths on a large network, which is generated using real-world
data and has over 100 subnets and 1400 hosts.

This paper is structured as follows. In Section II we review
related work. Section III provides background information
on RL and C2. In Section IV, we present the details of
the proposed C2 simulation model and its RL formulation.
Experiment results are discussed in Section V. Finally, we
conclude the paper and discuss future work in Section VI.



II. RELATED WORK

There has been a growing interest in applying RL to
cyber security [7]. Compared with common machine learning
models (e.g., Random Forest and Support Vector Machine,
Naive Bayes), RL-based intrusion detection systems (IDS)
[8]–[10] have shown better performance (in terms of accuracy,
precision, recall, and F1 score) on popular datasets such NSL-
KDD [11] and the Aegean Wifi Intrusion Dataset (AWID)
[12]. Due to the classification nature of these models, the RL
formulation is often straightforward: the state is the features
(usually less than 50) selected from the given dataset, the
action is the predicted class label, and the reward is positive
(negative) for correct (incorrect) prediction.

RL has also been used for penetration testing. In particular,
attack graphs [13] and the Common Vulnerability Scoring
System (CVSS) have emerged as an effective tool to construct
the Markov Decision Process (MDP) for the RL agent [5],
[14]–[16]. To capture operational nuances, the notion of cyber
terrain is first proposed in [5], where firewalls are treated
as cyber obstacles and will incur protocol-specific negative
rewards and reduce transition probabilities between states.
Under this framework, successful applications have been made
in crown jewels analysis [3] and identifying optimal paths for
data exfiltration [2].

Cyber C2 has been a subject in the academic literature
for decades [17], [18]. Many works consider C2 simulation,
control, and infrastructure [19]–[21]. More recent literature
develops tools for automating command and control [22],
[23], including a non-proprietary language [24]. RL-based
approaches to automating command and control have not been
explored in the academic literature.

The literature on botnets often assumes a command and
control setting [25], but botnets are not representative of all
C2 operations. Moreover, botnets are often a tool to carry out
command and control [26]. In this way, in the context of this
paper, botnets describe how to implement the more generically
defined action space of the RL agent.

III. PRELIMINARIES

A. Reinforcement Learning

Reinforcement learning is a framework in which an agent
learns to optimize its behaviour by interacting with its environ-
ment [27]. The environment is usually modeled as a Markov
decision process (MDP): (S,A, P, r, γ), where S is the state
space, A is the action space, P : S ×A → S is the transition
function, r : S × A × S → R is the reward function and
γ ∈ (0, 1] is the discount factor, which determines the present
value of future rewards. The agent’s behavior is characterized
by its policy π, which is a probabilistic distribution over
actions given a state. For deterministic policies, the action
taken in state s can be denoted as π(s). At each time step,
the agent observes a state st, takes an action at according
to π(a|st), and transitions to a new state st+1 and receives a
reward rt = r(st, at, st+1). The cumulative discounted reward
is called the return and is defined as Gt =

∑∞
k=0 γ

krt+k.

The goal of an RL agent is to learn an optimal policy π∗

that maximizes the expected return from each state. Generally,
RL algorithms can be categorized into three groups: value
function-based (also known as critic-only) methods, policy
gradient (or actor-only) methods, and actor-critic methods.

Value function-based methods such as Q-learning [28] or
deep Q-network (DQN) [29] learn optimal policies by first
estimating the optimal action-value function Q∗(s, a):

Q∗(s, a) ≡ max
π

Qπ(s, a)

≡ max
π

Eπ

[
Gt|st = s, at = a

]
, (1)

which can obtained by solving the Bellman equation:

Q∗(s, a) = Es′
[
r + γmax

a′
Q∗(s′, a′)|s, a

]
. (2)

Then, an optimal policy π∗ is derived by selecting the action
that yields the largest Q-value:

π∗(s) = argmax
a

Q∗(s, a). (3)

Meanwhile, policy gradient approaches directly parameter-
ize the policy π(a|s; θ) and optimize a performance measure
J(θ) such as the expected return E[Gt] via gradient ascent.
However, such methods often suffer from high variance and
therefore may result in slow learning. To reduce the variance,
actor-critic methods use an estimate of the value function
Vπ(s) ≡ Eπ[Gt|st = s] as a baseline when estimating the pol-
icy gradient ∇J(θ) [7]. The critic is responsible for learning
the value function while the actor updates policy parameters
by using the estimated policy gradient. In particular, the policy
gradient can be estimated as

∇J(θ) ≈ E
[
∇θ log π(at|st; θ)At

]
, (4)

where At = Q(st, at) − V (st) represents the advantage of
taking action at at state st.

One common problem with policy gradient methods is that
large policy updates may occur and result in performance
collapse, which can be difficult to recover from since the agent
will be trained on the experience generated by bad policies.
To improve training stability, Proximal Policy Optimization
(PPO) [30] uses a clipped surrogate objective function:

L(θ) = E
[
min

(
ρt(θ)At, clip

(
ρt(θ), 1− ϵ, 1 + ϵ

)
At

)]
, (5)

where ρt(θ) = πθ(at|st)/πθold(at|st) is the probability ratio
of the new policy over the old policy. The advantage function
At is often estimated using the generalized advantage estima-
tion [31], truncated after T steps:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (6)
where δt = rt + γV (st+1)− V (st). (7)

To support exploration, an entropy bonus βH(θ) is often added
to the objective function (5), where β is a coefficient.



B. Command and Control

The term Command and Control (C2) has long been as-
sociated with military operations, referring to the systems
in place and the use of the proper people overseeing the
proper resources to accomplish specific mission goals [32]. C2,
when applied to malware actors and behaviors, refers to the
post-infection communication required for a piece of malware
to work in concert with human orchestrators and effectively
accomplish the goals. This goal may range from quietly sitting
in place for a long period of time to a noisy smash-and-grab
operation to get as much data as possible, regardless of the
chance of getting caught. Dittrich and Dietrich [33] examined
the connection types and network traffic commonly associated
with three distributed attacker/intruder tools (Handler/agent,
central C2 mechanisms IIRC/botnet, P2P networks) and found
that techniques that use direct, encrypted communications are
the most difficult to locate and prevent, and a distributed
external node C2 provides the most resiliency to having it’s
communication lines severed.

To simulate real-world conditions in the internal networks,
a series of communication paths, routers of various levels
of security, and end-point nodes with potential vulnerabilities
was created programmatically using a script. The conditions
were created using real work experience from penetration
testers and security analysts and adapted to accommodate
the implementation of the 3-stage campaign model (detailed
below). For this experiment the internal network nodes, once
infected, require external communication to perform complex
actions, but can still perform basic network enumeration and
infection-spreading activities while waiting.

IV. METHODS

In this section we present the details of C2 simulation
model, its RL formulation, and the generation process of the
test network.

A. Attack Simulation Overview

A C2 attack campaign is modeled as a three-stage process
consisting of (i) infection, (ii) connection, and (iii) exfiltration
(Fig. 1). The attacker first tries to gain a foothold on some
target hosts by exploiting known vulnerabilities. It then seeks
to establish communications with the C2 server for further in-
structions (e.g., lock or send out certain files). After identifying
valuable information on the target system, the attacker starts to
send data packets from the infected hosts to the remote server.
An attack is considered to be successful if all three stages are
completed in a given period of time.

During the infection phase, the agent can perform a subnet
scan or an exploit action on any given target. A subnet scan
will reveal not only all hosts on the same subnet but also hosts
with certain services on the adjacent subnets. Each exploit
is associated with a Common Vulnerabilities and Exposures
(CVE) vulnerability and the success of the exploit depends
on the presence of a specific service or process and the
operating system running on the target host. A host must
be discovered first through a subnet scan before it can be

Fig. 1: Command and control attack as a three-stage process.

Fig. 2: An example network with firewalls.

exploited. Likewise, doing a subnet scan from a particular host
requires gaining access to it first. As a result, compromising
a sensitive target often involves discovering and exploiting
multiple intermediate hosts.

Once a sensitive host is compromised, the agent may initiate
connection attempts by taking the connect action, which sends
a small packet to the C2 server on the Internet. To establish
a connection, the traffic needs to pass through all firewalls
between the host’s subnet and the Internet. The connection
attempt will be blocked if any one of the firewalls has gone
through an update since the infection of the host. It may also
fail with some probability, in which case another attempt is
needed. However, too frequent connection attempts can raise
alerts and lead to an emergency firewall update, which will not
only block all future connections from the originating host but
also from neighbouring infected hosts.

After establishing communications with the C2 server, a
target payload of certain size is identified and a portion of
the payload can be uploaded at a time. The task is complete
when the entire payload is uploaded from every sensitive host.
Similar to the connecting phase, outbound traffic are monitored
by firewalls. Therefore, in order to send out the entire payload
without being detected and blocked by firewalls, the agent
needs to take deliberate pauses during the upload process.

B. Network Firewalls

Firewalls are located between all subnets and the Internet.
For the outbound traffic to reach to the C2 server, it needs
to pass through all firewalls on the shortest path (i.e., the
path with the fewest hops) between the originating host’s
subnet and the Internet. Fig. 2 shows an example network
with multiple firewalls, where traffic from Host 1 in Subnet
1 to the C2 server on the Internet needs to pass through both
Firewall 1 and Firewall 4.

Firewalls are updated periodically or when unusual traffic
patterns are detected. A wall-clock time (in seconds) is used



TABLE I: Firewall Parameters.

Firewall Parameter Value
connect probability 0.8

max connect attempts 3
max upload volume (MB) 5000
max upload time (minutes) 4

update frequency (hours) 24

to determine when a regular update is due. Unlike the number
of time steps, which always increases by one in MDPs, the
wall-clock time increases by different amounts depending on
the actual action performed.

An emergency firewall update will be triggered when one
of the following conditions is met:

• the cumulative connection attempts from a host exceeds
a threshold max_connect_attempts (a connection
attempt may be blocked by a firewall with probability
1− connect_probability);

• the total upload volume during a five-minute window is
greater than max_upload_volume;

• the total upload time during a five-minute window is
greater than max_upload_time.

The values of all firewall-related parameters are shown in
Table I.

Both the scheduled and emergency firewall updates will
patch security vulnerabilities, therefore blocking future con-
necting or uploading attempts from compromised hosts. On the
other hand, the attacker is assumed to be capable of adapting to
the updates so that hosts compromised after a firewall update
may still establish connections to the C2 server. In short, there
is only a limited window for the agent to connect to the C2
server after getting a foothold on a system.

C. Reinforcement Learning Formulation

1) State Space: The state includes the following features
for every host:

• Subnet ID and local ID,
• Operating system,
• Services and processes,
• Discovery value and status,
• Infection value and status.

Each host’s subnet ID, local ID and operating system are
one-hot encoded. Services and processes are represented by a
vector of ones and zeros, where one means that the the service
or process is running on the host. The discovery/infection
status is changed from zero to one after the host is discov-
ered/compromised. Similarly, discovery and infection values
are the rewards given to the agent after it finds and exploits a
host, respectively.

In addition to the above features, each sensitive host has the
following:

• Connection status,
• Time since infection,
• Remaining payload size,
• Cumulative connecting attempts,
• Cumulative upload time and upload volume.

TABLE II: List of actions.

Action Type Stage Time
Subnet Scan I 30

Exploit I 10
Connect II 1
Upload III 10
Sleep I, II, III 60

A sensitive host can be connected, not connected, or isolated.
Its time since infection is measured in seconds instead of time
steps. Data exfiltration is complete once the remaining payload
size becomes zero. The cumulative metrics are computed with
decay factor d = 0.999. For example, let ci,t denote the
cumulative connecting attempts at host i and time step t, then

ci,t+1 =

{
ci,td

τt,t+1 + 1, if at+1 is to connect host i

ci,td
τt,t+1 , otherwise

(8)

where τt,t+1 is the elapsed clock time between step t and t+1.
2) Action Space: The action space consists of five types of

actions: subnet scan and exploit actions during phase one of
the attack campaign, connect actions during phase two, upload
actions during phase three, and a sleep action applicable in all
phases. Except for the sleep action, which simply does nothing
for a given period of time, each action requires specification of
a target host. For a single host, there may be multiple exploit
actions, one for each known vulnerability. Additionally, two
upload actions are defined for each sensitive host - a fast one
that uploads 1000MB of data in 10 seconds and a slow one
that uploads 10MB in 10 seconds.

As mentioned previously, after each step the simulation’s
clock time increases by a different amount based on the action
performed. Table II shows the wall-clock time for each action
type considered in this study. Note that for erroneous actions,
such as doing a subnet scan at a non-compromised host or
uploading from a non-connected host, the simulation clock
will only increase by one second as these errors will quickly
interrupt the execution of the selected actions.

3) Reward Function: The reward function can be broken
into two parts: a reward for making progress towards the goal
and a cost for taking a specific action. Actions with higher
costs are more likely to trigger the defense system of the
network.

Gangupantulu et al. [5] introduced cyber terrain into CVSS-
based MDPs by modifying transition probabilities for travers-
ing firewalls and the reward function for different protocols.
Cody et al. [2] further incorporated service-based defensive
cyber terrain into CVSS-MDPs, which assumes that attackers
can infer the presence of defenses based on the services
running on a host even if they can not detect a defense directly.
We adopt their methods and classify the services into three
categories with high, medium, and low penalty. The cost of
an action ranges from 1 to 6 and is determined by both its
type (e.g, exploit or scan) and the services (e.g., http, imap,
ssh) running on its target host.

The agent receives positive rewards after successfully dis-
covering a target host, exploiting it, connecting it, or up-



TABLE III: List of rewards.

Reward Type Value
Discovery 1000

Exploit 1000
Connection 1000

Upload (per unit) 0.1
Upload (bonus) 10000

loading any partial payload from it to the C2 server. Upon
finishing sending the entire payload, the agent is given a
large bonus reward. However, if exfiltration is detected by
network firewalls, then the agent will receive a penalty equal
to the total accumulated rewards gained on the originating
host and the host will be isolated. That is, the agent will lose
all rewards from discovery, infection, connection and partial
uploads. Table III lists rewards used in this study.

D. Network Generation

To achieve the goal of generating realistic network topolo-
gies for C2 testing, we require networks to be realistic in size
and scope, as well as in their composition, connectivity, and
security posture. To achieve these requirements, the following
steps were taken during the initial network generation and
configuration.

First, a series of variables were defined to control the size
and scope of the network. Size and scope were measured by
the following: total (approximate) number of IPs, minimum
and maximum number of IPs per subnet, and total number
of subnets. These variables would accept static values and
the network generation script would use these values to
composite a network that closely matched the desired size and
scope. Randomization is essential to ensure that each network
generated was unique.

Second, a series of variables were defined to meet the
desired configuration of the network. These variables would
accept static values to determine the maximum number of
open ports and the maximum number of Common Platform
Enumeration (CPE) types assigned to an IP address. A restric-
tion is required so that the maximum number of designated
CPE assignments will never be greater than the number of
available open ports. Randomization is essential to ensure that
each network generated was unique.

Third, a dataframe was constructed to hold the results of
a continuous 24 hours data collection from the Shodan API.
This dataframe was used to generate a reference dataframe that
would be used to join CPEs by service and technology to each
IP address. By applying a groupby function to the dataframe,
the results were aggregated by port, service, and technology.
The results of the groupby function were then used to construct
the reference dataframe consisting of a record for each port
number, a list of service & technology combinations, and a
probability for each item in the list. The reference dataframe
was saved to a separate file for persistent use.

Fourth, a dataframe was constructed of ports and probabili-
ties. The probability of each port’s potential assignment to an
IP address would be determined by the probability score of

the port. The probability score of each port was determined by
the open-frequency score in the “nmap services” publication
[34]. Four buckets were defined to determine the probability
of a port being assigned to an IP address: High (0.1 - 1.0),
Moderate (0.05 - 0.1), Low (0.005 - 0.05), Rare (0.0 - 0.005).

To bring together these dataframes and variables into a
cohesive network, a series of algorithms were defined. These
were designed to implement the configuration of the created
network and meet the desired connectivity of the network. The
following is a list of the algorithms that were used to generate
the network.

• IP addresses were assigned to each subnet per the desired
size and scope settings. These IP assignments would
follow a general Class C netblock, defined as either a /24
CIDR notation or 255.255.255.0 netmask, to determine
the correct IP address numbering scheme. The private
addressing netblock 10.0.0.0/8 was used as the enterprise
network to emulate common internal private IP usecases.

• The number of ports assigned to each IP address would
be determined by the maximum number of open ports
variable. A random number between 1 and the maximum
number of open ports would be generated for each IP
address. The random number would be used to determine
the number of ports assigned to each IP address.

• To determine the assigned port a random number was
generated between 0 and 1. This random generated num-
ber identifies the designated probability range for a given
port assignment on an individual IP. A port number within
the corresponding probability range would be assigned to
the IP address. The algorithm would continue to generate
random numbers until the maximum number of open
ports was reached. The algorithm would then move on
to the next IP address. This process would continue until
all IP addresses were assigned the configured number of
open ports.

• The dataframe of CPEs and port numbers was used to
assign CPEs to each IP address’ relevant open ports. The
number of CPEs assigned to each IP address would be
determined by the maximum number of CPEs variable.
A random number between 1 and the maximum number
of CPEs would be generated for each IP address. The
random number would be used to determine the number
of CPEs assigned to each IP address. If the number
of CPEs assigned to an IP address was greater than
the number of open ports, the number of CPEs would
be reduced to match the number of open ports. The
probability of each CPE being assigned to an IP address
would be determined by the probability score of the CPE
found within the corresponding reference dataframe.

• This CPE dataframe was further enriched by associat-
ing known security products to a new column in the
dataframe. This column would be used to determine if a
corresponding IP address was running a security product.
A non-exhaustive list of security product descriptions
identified includes: firewall hardware and software, in-



trusion detection/prevention systems, and web application
firewall software.

At this point in the network generation workflow, a network
has been created consisting of a set number of subnets,
numerous IP addresses assigned to each subnet, open ports
assigned to each IP address, and CPEs assigned to the nec-
essary open ports. In order to meet the desired connectivity
of the network, an algorithm was created to determine the
viability of service connections between different subnets. This
algorithm assigned firewall allow rules to each subnet based
on the desired connectivity settings. The following is a list
of the connectivity settings that were used to determine the
viability of service connections between different subnets:

• Allow all traffic between subnets with mirrored services
and technologies.

• Allow specific port traffic between subnets with individ-
ual matching services and technologies.

• Disallow traffic between subnets with no matching ser-
vices and technologies.

To create vulnerabilities in the network, CVE exploits are
assigned to each CPE in the network. The CVE exploits are
attributed to each CPE by querying the CVE-Search database
created locally on a server. CVE-Search [35] is a tool to
import CVE and CPE into a MongoDB to facilitate search
and processing of CVEs. The CVE exploits are parsed for the
CVE ID, the CVSS score, and the CVSS vector. The CVE ID,
CVSS score, and CVSS vector are then attributed in individual
columns to the CPE record in a new dataframe.

Once all facets of the network have been created, the
network output is manifested in a singular yaml file. This
file contains all of the information necessary to create testing
scenarios. The yaml file contains the following information:

• Number of subnets,
• Number of IP addresses per subnet,
• Open ports per IP address,
• Associated services and technologies per open port,
• CPEs assigned to open ports,
• CVE exploits assigned to CPEs,
• CVSS scores assigned to CVE exploits,
• CVSS vectors assigned to CVE exploits,
• Firewall allow rules between subnets,
• Services and technologies designated as security prod-

ucts.

V. EXPERIMENTS

In this section we describe the experiment details including
the simulation network and the RL training procedure. We
present the results across multiple random seeds and discuss
key characteristics of the learned attack paths.

A. Network Description

The experiment network has 101 subnets and a total of 1444
host. It is much larger than those used in previous studies,
which usually have no more than a few hundred hosts. Each
subnet contains between 3 and 50 hosts. The attacker agent

TABLE IV: List of hyperparameters.

Hyperparameter Value
Critic learning rate (αw) 3× 10−4

Actor earning rate (αθ) 3× 10−5

Discount factor (γ) 0.99
Horizon (T) 4096
Minibatch size 64
Epochs (K) 5
GAE parameter (λ) 0.95
Clipping parameter (ϵ) 0.2
Entropy coefficient (β) 0.001

is assumed to have gained an initial foothold on host (1, 0)
in subnet 1, which is directly connected to the Internet. All
other subnets are private and are not directly accessible from
the Internet. A Windows machine (24, 3) from subnet 24 and
a Linux machine (44, 5) from subnet 44 are selected as the
C2 attack targets. Both machines are running HTTPS service
and are not reachable from subnet 1.

B. Training Details

The RL agent is trained in an episodic fashion using the
well-known PPO algorithm [30]. An episode ends when every
sensitive host either completes sending payload to the C2
server or is isolated by firewalls. The target payload for each
host is 10,000MB. To avoid extremely long episodes, a limit
of 10,000 is imposed on the maximum number of time steps.
Both the actor and the critic are approximated by a two-
layer feed-forward neural network, where the first layer has
128 neurons and the second layer has 64 neurons. Other
key hyperparameters are listed in Table IV. The RL agent
is trained for 5 million iterations and the training process is
repeated 5 times with different random seeds. All experiments
are conducted on two Intel Xeon Platinum 8124M processors
(18 cores/processor)2.

C. Results

We report the average episode rewards over five training
runs in Fig. 3 and the average episode length in Fig. 4. As
can be seen, training is stable and the RL policy converges
in 10,000 episodes. In particular, Fig. 3 shows that the sum
of rewards in an episode steadily increases to 26,000, which
is close to to the theoretical maximum under the reward
structure listed in Table III. Meanwhile, the episode length
gradually decreases, eventually averaging just over 100 steps
(Fig. 4). This suggests that as training goes on, the RL agent
completes the attack task more efficiently and takes fewer
random actions.

To evaluate the final learned policy, we sample 100 attack
paths using the trained actor network. Among these, 78 trajec-
tories end with both target hosts completing sending payload
to the C2 server, while in the other 22 scenarios one of the
targets host is blocked by firewalls. In all cases, at least one
target host is successfully attacked by the RL agent. Table V
reports statistics on the length, duration, and rewards from the
generated attack paths. On average, the RL agent finishes the

2Comparable hardware could have been used for experiments



Fig. 3: Average episode rewards over 5 runs.

Fig. 4: Average episode length over 5 runs.

task in 107 steps or 47 minutes, and receives a total reward
of 25,824.

Due to the stochastic nature of the learned policy, the RL
agent may take some unnecessary or redundant actions such
as exploiting unimportant hosts or connecting a host that has
already connected to the C2 server. After pruning the best-
performing trajectory, we identify the key steps in the C2
attack as shown in Table VI.

The agent starts the attack after getting an initial foothold
on host (1,0) in subnet 1. It first performs a subnet scan,
which leads to the discovery of hosts on other subnets. Among

TABLE V: Summary statistics of the generated attack paths.

Steps Duration (minutes) Rewards
Mean 107 47 25824
Std 32 16 5005
Min 69 27 15762
Max 374 191 28859

TABLE VI: List of main steps taken by the RL agent.

Action Target Vulnerability
Subnet Scan (1, 0) -
Exploit (92, 27) CVE-2020-1259
Subnet Scan (92, 27) -
Exploit (44, 5) CVE-2019-15920
Exploit (24, 3) CVE-2020-1259
Connect (44, 5) -
Connect (24, 3) -
Upload (1000MB) (44, 5) -
Upload (1000MB) (24, 3) -
Sleep - -

TABLE VII: Statistics on the number of connect, upload, and
sleep actions taken in successful episodes.

Action Connect Upload Sleep
Mean 4.2 20 32.6
Std 1.6 0.0 1.5
Min 2 20 29
Max 10 20 36

these, host (92, 27), a Windows machine, is selected as the
target for further exploitation. After compromising this host,
the agent does another subnet scan and finds both sensitive
hosts (24, 3) and (44, 5), which are then exploited using
different vulnerabilities. Once connections are established, the
agent starts to upload payload from each host to the C2
server. Noticeably, the agent always take the fast upload option
instead of the slow one. This is only possible if the agent
knows when to sleep or pause to hide its activities.

We summarize the number of connection attempts and the
number of upload and sleep actions from successful episodes
in Table VII. On average, it takes 4.2 attempts before connec-
tions to the C2 server are established. Noticeably, the agent
always chooses the fast option when it comes to uploading
payload (20,000MB of payload for two targets requires at
least 20 upload actions). Meanwhile, it takes many deliberate
pauses, averaging over 32 sleep actions in an episode.

To further examine how the RL agent avoids firewall
detection during uploads, we plot the time points at which
upload actions are taken during a successful C2 attack in
Fig. 5. It is clear that the agent has learned to upload at a
regular cadence to circumvent the current defense measures.
The traffic pattern may then be further analyzed by security
analysts to develop more sophisticated and effective defense
strategies. For example, in addition to checking the traffic
throughput during fixed time intervals, new firewall rules can

Fig. 5: Times of upload actions taken during a C2 attack.

Fig. 6: Distribution of the pause duration between upload
actions from successful attack paths.



be created based on the periodicity of traffic data.
The distribution of the time between consecutive uploads

from successful trajectories are shown in Fig. 6. As we can see,
most of the time the agent waits for about two minutes, which
corresponds to taking two sleep actions, before resuming
the upload process. This ensures that the agent is able to
effectively use the available bandwidth for data exfiltration
while keeping the total upload volume during the monitor
window well below the alert threshold.

VI. CONCLUSION

In this paper, we have proposed a reinforcement learning-
based approach for discovering command and control attack
paths. We showed that the RL agent can effectively complete
the infection, connection, and data exfiltration stages in a large
network without getting detected by firewalls. The identified
attack path and traffic pattern can be further analyzed by
security experts to discover new threats and develop enhanced
security measures.

Future work should consider exfiltration using different pro-
tocols such as HTTPS and DNS. More sophisticated intrusion
detection/prevention systems should also be incorporated into
the simulation to provide a more realistic and challenging
environment for the RL agent.
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