
Serverless Computing –
Architectural Considerations & Principles
January 2018

03

Serverless Computing – Architectural Considerations & Principles

Introduction
The last decade has seen tremendous
innovation in the enterprise IT space.
The primary focus of this technological
innovation has been enabling
businesses agility, improve resiliency
and drive cost efficiencies.

The revolution in the server computing
space over the past decade has
allowed enterprise IT to develop and
deploy scalable software without
worrying about the underlying
infrastructure. At the same time,
cost of technology operations

1. Evolution of Server Computing: VMs to Containers to Serverless — Which to Use When?, Gartner, June 2017

Figure: Evolution of technology

Serverless Computing –
Architectural
Considerations & Principles

have also gone down significantly
while improving time-to-market for
enterprises.

Server computing is now evolving
towards even smaller units of scale –
from virtual machines to containers
to serverless1. The technology
evolution has been depicted below.

This thought paper provides a
vendor neutral summary of industry
recommended principles and key
considerations for architecting
serverless systems.

Serverless as a concept is not
new
Amazon launched its cloud
storage service (AWS S3)
in 2006, which was also
a ‘serverless service’ that
provided unlimited storage at
infinite scale without having to
maintain servers. However, the
differentiation now is that the
compute services are becoming
‘serverless’ thus defining a
new paradigm in software
architecture.

Atomic Unit of Compute Physical Server Virtual
Machines Containers Functions

Software Architecture Monolith n-Tier Microservices Serverless

Enterprise Hardware Enterprise Data
Center

Cloud
Computing Hybrid CloudCo-location

04

Serverless Computing – Architectural Considerations & Principles

So, what exactly is ‘serverless’
The word ‘serverless’ doesn’t stand for
‘No Servers’. Instead, servers are an
integral part of this concept; however,
it is the cloud provider which handles
the complexity of managing individual
servers and provides an ephemeral
compute service2, that will execute a
piece of code on-demand triggered
through requests and events, with the
service consumer being charged only
for the duration of execution.

In the traditional cloud computing
scenario, enterprises needed to
pay a fixed and a recurring amount
for using virtual servers to run its
websites or applications irrespective
of whether the cloud services are
being used or not. However, with
serverless computing enterprises will
need to pay only for service usage
with no charge for idle time i.e. pay-
per-execution.

2. Denotes the fact compute resources in serverless disappears immediately after use
3.  Functions are units of deployment or work in serverless computing and contains application or business logic in the form of code which is executed when

a certain event is triggered

Serverless computing can
complement the API economy
APIs are end-user interfaces
of a service that allows
another piece of a software
to communicate and in-turn
consume the same. With
serverless computing, APIs
will remain at the heart of the
services; however, the backend
would be serverless – an
invocation of the API would in
turn trigger the function or a
series of functions.

To summarize, serverless is an
event-driven computing model or
code execution where underlying
infrastructure (including physical
and virtual hosts, virtual machines,
containers as well as the operating
systems) is abstracted from the
developer and the service consumer.
Applications run in stateless
containers that are spawned
based on triggering of events.
The application logic or business
logic is encapsulated in Functions3
which runs on containers in the
cloud provider’s infrastructure.
As the application load increases,
more Functions are executed
proportionately, the scaling of
the underlying infrastructure is
taken care by the cloud provider.
The consumer of these services,
does not need to plan for scaling,
capacity planning and management
and corresponding administration

activities associated with maintaining
virtual machines, server farm
capacity and operating systems.

Serverless computing: An
evolution of cloud computing
Serverless computing is an evolution
of cloud computing service models
–from Infrastructure-as-a-Service
(IaaS) to Platform-as-a-Service (PaaS)
to Function-as-a-Service (FaaS).
While IaaS abstracts the underlying
infrastructure to provide virtual
machines for ready consumption and
PaaS abstracts the entire operating
system and middleware layer to
provide the application development
platform, FaaS goes one step further
in terms of abstracting the entire
programming runtime to provide
options to readily deploy a piece of
code and execute without worrying
about its deployment.

Leading cloud providers like Amazon,
Microsoft, Google and IBM have
launched serverless services in the
last 2 years. While Amazon’s service
is called AWS Lambda (launched
in 2014), the respective services
of Microsoft and Google are called
Azure Functions (launched in 2015)

05

Serverless Computing – Architectural Considerations & Principles

4.  Relational databases like SQL are not preferred in a serverless architecture because they have a limit on the number of database connections that can be
opened simultaneously at a time which can result in scalability and performance challenges

and Google Functions (launched in 2016 – alpha release).
IBM has also released its serverless service called
OpenWhisk.

Re-imagining the technology stack
As depicted below the traditional technology stack for
service delivery can be re-imagined to fit the serverless
stack across each layers of network, compute and
database.

IaaS PaaS FaaS

Unit of deployment Operating System Applications Functions

Provides Virtual machines packaged
with operating systems

Application development
platform

Execute code (with business
logic) on-demand

Abstracts Physical hardware Operating system &
middleware

Programming runtime

Traditional Stack Serverless stack

Network API Gateway

Compute Function as a Service
(FaaS)

Database Database as a Service
(DbaaS)

01 02 03

The three key core technology components of serverless computing stack includes the following:

API Gateway: The API Gateway
acts as the communication layer
between the frontend and the FaaS
layer. It maps REST API endpoints
with the respective functions that
runs the business logic. With servers
out of equation there is no need for
deploying and manage load balancers
also in this model.

Functions or Function as a Service
(FaaS): This is the layer that executes
specific business logic (or code) with
the cloud provider providing the level
of abstraction in terms of executing
the business logic.

Backend as a Service (BaaS): This is
essentially a cloud based distributed
NoSQL database which essentially
removes database administration
overheads.

06

Serverless Computing – Architectural Considerations & Principles

Benefits of serverless computing
Key attributes of serverless computing include the following:

5.  For example, AWS services like S3, DynamoDB, Kinesis Streams, SNS and SES etc. can trigger AWS Lambda function. HTTP triggers either from a REST API
are also supported

6.  No operations is a concept which refers to an IT environment becoming automated to the extent that the underlying infrastructure is abstracted without
need for a dedicated team to manage the same

01

02

03

04

05

Fully managed service: As iterated earlier, it is a fully managed service provided by the cloud service
providers and the developers doesn’t need to worry about the underlying infrastructure, operating
system, middleware, language runtime and its management and dependencies.

Supports event-driven approach: Functions are triggered based on events. Different cloud
services5 and existing applications that supports a trigger mechanism can initiate and launch a
function.

Provides infinite scalability and built-in high availability: Depending on the user traffic,
functions scale horizontally in a completely automatic and elastic fashion which is managed by the
cloud service provider.

Less-Ops: Serverless doesn’t necessarily mean NoOps6 for the service consumers; however, it can
definitely mean ‘Less-Ops’ as operational tasks like debugging, testing, trouble-shooting etc. remains
while the infrastructure management is fully outsourced to the cloud service provider.

Pay for execution time: In a serverless computing model service consumers pay only for the
duration of execution of a function and the number of functions executed. When a function is not
executed no charge is levied – thus eliminating any idle time. This is a significant benefit over cloud
computing where users are charged on an hourly basis for running virtual machines.

07

Serverless Computing – Architectural Considerations & Principles

Industry incumbents can
regain competitive advantage
through this smallest form of
computing
Competitive advantage in today’s
business landscape is determined by
the quality of customer interaction
and service, customized products
and services and effectiveness

"We are a technology
company",
JPMorgan CFO Marianne Lake
(Source: Business Insider, 2016)

With tech start-ups disrupting
almost every industry with
technological innovations,
industry incumbents are
struggling with their legacy IT
footprint to innovate at the
required pace to keep up with
the changing customer

Not all application or service
can be delivered in a serverless
model – we believe the future
enterprise IT landscape will be a
hybrid landscape.

of internal business processes
effectiveness. And all of these
are driven by technology with
architectural design and deployment
of software being at the core.

Serverless computing gives industry
incumbents the required computing
model to compete with the high-tech
new comers in their industry. In
this technology approach, software
applications can be broken down
into individual functionalities or
functions in the serverless computing
parlay (i.e. a micro-services based
architecture) that are portable,
cost-efficient and most importantly
not bound to a legacy infrastructure
footprint. The separation of the
application functionalities from
the supporting infrastructure
provides the greatest opportunity
for enterprises for application
modernization and remove all
development constrains posed

by legacy infrastructure. In fact,
serverless can be the exit strategy
for enterprises from their legacy IT
footprint.

Key considerations for
architecting serverless
systems
Serverless computing might
seem a lot more attractive over
other traditional infrastructure
consumption and computational
models. However, we at Deloitte
believe that without the right
software architecture it is not
possible to realize the benefits.

08

Serverless Computing – Architectural Considerations & Principles

In addition, not all application or service can be delivered in a serverless model – we believe the future enterprise IT
landscape will be a hybrid landscape. Hence, to ensure that the optimum architecture is in place, we have outlined
certain architectural considerations that needs to be kept in mind while architecting serverless systems.

Key architectural considerations for serverless are as follows:

Functions are stateless: This implies that any kind
of resource within a function will not exist after
the function ceases to exist. This is an important
consideration and hence appropriate measures must
be implemented. For example, storing the session state
in a persistent database if the session needs to be
preserved.

Functions are ephemeral i.e. persist
for a certain period of time only:
Functions are deployed in a container7.
These containers are started when a
specific event is triggered and remains
active for a certain duration beyond
which it shuts-down automatically and
all resources within the container cease
to exist thereafter8. Hence, applications
with larger processing requirements
may not be suitable candidates for
serverless.

Cold start: Cold start happens when an inactive (i.e.
cold) function is invoked for the first time. This is
typically the time taken by the underlying container
running the function to load the runtime along with
the libraries and associated dependencies. Cold
starts can increase the execution time significantly
and affect application performance if not handled
appropriately. One way of addressing this bottleneck
is to ensure functions stay alive (i.e. hot)
before execution.

Functions provide limited ability
to configure database indexes:
Use of relational database in
serverless architectures creates
scalability and performance
challenges due to limitations
of the number of simultaneous
connections that can be opened
in relational databases. Instead
NoSQL databases can be the
preferred choice. In addition, there
can be limitations with regard to
configuring nodes and indexes.

Functions don’t allow file systems level
access: This essentially means features
like reading attributes from configuration
files or spilling over in-memory cache to
disk is not supported. Hence, serverless
may not be the right architectural model
for applications requiring file system level
access or operating system level access.

Language support: Currently different
serverless services support different
languages for development. For example,
AWS Lambda supports Node.js, Python
and Java; Azure Functions support C#,
Javascript and (preview of F#, Python,
Batch, PHP, PowerShell); and, Google
Functions supports only Javascript. Hence,
selection of the platform may dictate the
choice of language for development.

Comes with built-in logging & monitoring
mechanisms: Serverless services today comes with
their own in-built logging and monitoring mechanisms9.
This can be an architectural and operational shift in case
an enterprise has been using custom tools for similar
purposes.

01

02

05

03

06

07

04

7.  Containerization involves splitting applications into small parts, or containers, all sharing the same underlying operating system
8.  For example, AWS Lambda and Azure Functions have maximum execution time (per request) of 300 seconds (i.e. 5 minutes)
9.  For example, AWS Lambda supports CloudWatch and Azure Functions support App Service monitoring

09

Serverless Computing – Architectural Considerations & Principles

Recommended serverless architectural principles
We believe designing the appropriate technology architecture, aligned to the business requirements is the foundation
for capitalizing on the technology innovations to drive competitive advantage in business. This is the reason why
companies like are Netflix, Amazon are successful. CIOs and Senior IT executives will need to realize this fact and the
sooner they do its better.

Below are some of the industry recommended guiding principles or best practices that can be kept in mind while
architecting serverless systems:

01

02

03

04

05

06

10.  Serverless: The future of cloud computing by Peter Sbarski, ServerlessConf, 2016

Develop single-purpose functions that
are stateless: Since functions are stateless
and persists for a limited duration only, it is
recommended to write single-purpose codes
for function. This limits the execution time of a
function which has a direct impact on cost. In
addition, single purpose codes are easier to test,
deploy and release thus improving enterprise
agility. Finally, even though statelessness may
be perceived as a limitation, it provides infinite
scalability to a platform to handle an increasing
number of requests, which otherwise would not
have been possible.

Design push-based, event-driven
patterns: Designing push-based and
event-driven architecture patterns
where a chain of events propagate
without any user input imparts
scalability to an architecture.

Incorporate appropriate security
mechanism across the technology
stack: Appropriate security
mechanisms must be incorporated at
the API Gateway layer and also at the
FaaS layer. These security mechanisms
include features like access controls,
authentication, identify and access
management, encryption and
establishing trust relationship etc.

Leverage third party services:
Serverless being an emerging field
existing enterprise tools for various
services like logging, monitoring etc.
may not be compatible. Choosing the
right third party tools for executing the
task at hand will be key for enterprises
to ensure the benefits of serverless are
utilized to the fullest.

Create thicker and powerful frontends:
Executing more complex functionality at the
front-end especially through rich client-side
application framework helps reduce cost by
minimizing function calls and execution times.
Completely decoupling back-end logic from the
front-end while not compromising on security is
one way of doing. This also allows more services
to be accessed from front-end resulting in
better application performance and richer user
experience.

Identify performance bottlenecks: On-going
measurement of performance bottlenecks in
terms of identifying which functions are slowing
down a particular service is critical to ensure
optimal customer experience.

10

Serverless Computing – Architectural Considerations & Principles

With the right architectural
considerations and due diligence,
serverless may present industry
incumbents with an exit strategy
to move from legacy infrastructure
to adopt public cloud models – this
was not observed earlier. However,
industry incumbents will need
move away from the status-quo and
embrace the change. A structured
approach with a defined roadmap
is required to move away from
the current software architecture
paradigms which is based on the

legacy monolithic model with the
serverless paradigm where the
focus isn’t on infrastructure but on
delivering the required business
functionalities which in turn changes
the economic model for IT service
delivery.

There are concerns though with regard
to vendor lock-in and adherence
to industry specific compliance
requirements in a serverless model.
Like any emerging technology,
Serverless will go through its cycle

before mainstream adoption happens.
Serverless has the potential to change
the economic model of IT consumption
of enterprises leading to significant
cost reductions associated primarily
with IT support and maintenance
(which can be a significant 50 – 60%
of the total IT budget of enterprises),
reduce time-to-market and foster
innovation to support changing
business requirements and provide an
edge over competitors.

Conclusion

11

Serverless Computing – Architectural Considerations & Principles

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited, a UK private company
limited by guarantee (“DTTL”), its network of member firms, and their related entities. DTTL
and each of its member firms are legally separate and independent entities. DTTL (also
referred to as “Deloitte Global”) does not provide services to clients. Please see www.deloitte.
com/about for a more detailed description of DTTL and its member firms.

The information contained in this material is meant for internal purposes and use only
among personnel of Deloitte Touche Tohmatsu Limited, its member firms, and their related
entities (collectively, the “Deloitte Network”). The recipient is strictly prohibited from further
circulation of this material. Any breach of this requirement may invite disciplinary action
(which may include dismissal) and/or prosecution. None of the Deloitte Network shall be
responsible for any loss whatsoever sustained by any person who relies on this material.

©2018 Deloitte Touche Tohmatsu India LLP. Member of Deloitte Touche Tohmatsu Limited

Rakesh Barik
Partner, Technology Consulting Leader
Deloitte Touche Tohmatsu India LLP
E-mail: rakeshbarik@deloitte.com

Anubrata Chakrabarti
Partner, Consulting
Technology Strategy & Architecture
E-mail: anchakrabarti@deloitte.com

Ritesh Pal
Manager, Consulting
Technology Strategy & Architecture
E-mail: riteshpal@deloitte.com

Contacts

