
1

VISION ANALYTICS

AI Computer Vision Solutions Architecture
By Vishal Kapur, Douglas Bourgeois, Amina Jackson, Julie Kim, Taylor Jones, and Zachary Zweig

apid development and implementation of Artificial Intelligence (AI) has enabled many organizations to act faster, improve
mission outcomes, and reduce costs. As part of this adoption trend, clients are increasingly requiring automated analytics
solutions that can generate accurate and meaningful insights to meet new business trends and customer demands.

One such example, Computer Vision (CV), utilizes AI to automatically process and analyze digital images or video files. This
capability is derived from advanced machine learning (ML) techniques that can train algorithms to parse and perceive
information contained within images or videos in much the same way humans ‘see’ – though CV can utilize inputs outside of
the confines of our visible spectrum. As advancements in hardware, software, and machine learning toolkits make it easier to
leverage real-time data and reduce latency, companies are focusing on computer vision applications to solve real-world
problems in various fields. A few examples of CV capabilities include:

Common Computer Vision Applications
• Security and Surveillance – Collecting and analyzing security footage at scale (e.g. security at airports, malls, and

military bases)
• Asset Management – Remotely monitoring assets reduces costs, optimizes business processes and increases

public safety (e.g., utility management, pothole detection, traffic monitoring)
• Autonomous Vehicles – Unmanned Aerial Vehicles, Unmanned Underwater Vehicles, and Unmanned ground

vehicles rely on computer vision to navigate their environments
• Banking, Insurance, and Finance –ATM facial recognition access and services and home loan evaluation
• Healthcare and Medical Research – Detecting and diagnosing diseases from radiology and pathology image

results complement patient care and medical services
• Retail and Advertising – Augmenting a shopper’s experience (e.g., targeted advertising) increases sales/revenues

The remainder of this paper will focus on the development of a Computer Vision Solutions Architecture (CVSA) designed to
accelerate the development of CV-based solutions. With an in-depth understanding of the requirements involved, this solution
architecture can be used as a sample guide for getting started in developing or tailoring CV solutions to your client’s specific use
case needs.

R

2

This architecture addresses typical machine learning challenges:
• Real-time predictions can be limited due to processing time
• Model underfitting: Can signify low accuracy in predictions, large data losses, or lack of training data
• Model overfitting: Misleading results with high accuracy can be produced by mixing validation testing data with

training data
• In general, training the model for deep learning can be expensive in terms of time and cost
• As data volumes increase processing time needs to be evaluated for feasibility

Accompanying the solutions architecture are Facial Recognition, Age and Gender Detection, and Pose Estimation proofs-of-
concepts. In addition to demonstrating the solutions architecture’s value as an accelerator, this proof of concept facilitates a
discussion around some of the technical considerations that must be adjudicated such as software and hardware
configurations, performance optimization, and scalability.

Computer Vision Solutions Architecture (CVSA)

The Computer Vision Solutions Architecture (See Exhibit 1) is designed to build a simple computer vision solution and depicts
different approaches taken to compare hardware performance. Because CV is a specific implementation of machine learning,
execution requires typical ML pipelines e.g. data ingestion, data preprocessing, training, transfer-learning, feature engineering,
hyper-parameter tuning, and model evaluation.

EXHIBIT 1 | COMPUTER VISION SOLUTIONS ARCHITECTURE

This CVSA relies primarily upon Convolutional Neural Networks (CNNs), a Deep Learning (DL) technique within the family of
Recurrent Neural Networks (RNNs).

Diverging pathways represent potential model configurations that vary in relation to the software, hardware, and ML
techniques deployed depending on the specific requirements for which one must optimize. Details on the tradeoffs for each
configuration will be included as the operationalized models are developed below.

3

CVSA Operationalization: Facial Recognition, Age & Gender Detection, and Pose Estimation

In this paper, three different use cases are operationalized to demonstrate the effectiveness of the solutions architecture: 1)
Facial Recognition, 2) Age & Gender Detection, and 3) Pose Estimation (a CV technique to identify body language through
detecting the positions of key body joints in an image).

Different motion picture files are used as input, with the simultaneous streaming of multiple movie trailers used as an analog to
emulate a multi-device surveillance system (Exhibit 2). To demonstrate the effects of different combinations of hardware and
software on performance, three different model configurations (Exhibit 3) are deployed and subjected to three different test
cases (Exhibit 4).

EXHIBIT 2 | DATA INPUTS AND SOURCE FORMATS FOR TEST CASES

Movie Trailer Length Size Computer Vision Usage
Troy 1 minute 28 seconds 16.1 MB Facial Recognition
Iron Lady 2 minutes 19 seconds 12.9 MB Gender and Age Detection
Kramer vs. Kramer 2 minute 32 seconds 11.9 MB Gender and Age Detection
Webcam 1 minute N/A Real Time
Troy (Streaming Online) 1 minute 30 seconds N/A Streaming Real-Time

EXHIBIT 3 | CVSA CONFIGURATIONS

Configuration Definition
Intel
OpenVINO

Intel's Open Visual Inference & Neural Network Optimization (OpenVINO) is an open-source product that
utilizes Convolutional Deep Neural Networks to enable and enhance deep learning and computer vision
workloads. It supports heterogeneous execution across computer vision hardware accelerators (CPUs,
GPUs, FPGAs, VPUs,) and maximizes performance for deep-learning workloads.

Multi-
Threading

A method of program execution that reduces the overhead of the operating system by sharing memory
across threads (units of program execution) resulting in a faster execution, thereby maximizing computer
resources through application programming techniques.

Standard -
No
Acceleration

Using computing resources without applying performance optimization at the code level nor at the
hardware level. Execution can be performed either on-premise or with a large cloud platform provider
such as Google, Amazon, and Microsoft which offer access to their respective computer vision APIs to
create specialized processes/applications.

EXHIBIT 4 | CVSA TEST CASES

Test Case Definition
Single File Processing Age and Gender Detection for each of the three configurations.
Multiple Model Processing Simultaneous processing of combinations of use case models (Facial Recognition, Age &

Gender Detection, Pose Estimation) for each of three configurations.
Multiple File Processing Simultaneous processing of multiple files with the same use case model (Age & Gender

Detection) for each of the three configurations.

For each configuration and test case, the host system is an on-premise Linux OS. However, clients have flexibility in choosing
whether to use their own on-premise system or a major cloud service provider (CSP) such as Amazon Web Services (AWS),
Google Cloud Platform (GCP), or Microsoft Azure.

4

CVSA Model Use Case Breakdown
1. Data Ingestion
The data ingestion phase consists of configuring a predetermined data set(s) to serve as input(s) to the CV model. These data
sets, in the form of digital images or video files, can be collected from various sources and include both static files as well as
real-time streaming from surveillance devices, aerial/satellite systems, or edge/IoT devices.1 For the purposes of this paper, the
data that will be ingested are from the data inputs show in exhibit 2.

2. Data Preprocessing / Multiprocessing
Data preprocessing is the process of collecting training data, cleaning data, and then preparing data to load into a model.

Collecting Training Data
Before a model can be trained, training data sets must first be acquired. Such data sets can be sourced from a variety of places
or created from scratch using a developer’s own image repositories. Google Image API was utilized for the tests conducted in
this solutions architecture because of the ease of image retrieval from Google’s image repository. For this proof of concept,
images of actors were automatically collected and stored in a designated file system. These actors correspond to those who
appeared in the movies being tested. Alternatively, in a real-world surveillance example, a repository of permitted personnel
and/or known bad actors can be used as a training set to recognize persons of interest.

Input Selection for Modeling
After the training data is collected, it is inspected for appropriate actor images to be used as model inputs. For the purposes of
this study, any images containing multiple persons are deleted from the input collection. The selected images are then called
from the program (using Python or C++), realign for facial landmark localization, and resized to fit the requirements of the CNN
(Frame x 750 pixels - width) used. Others may use any of a variety of algorithms for realignment and can set up a separate file
server or a cloud instance for storing the input and output result files.

3. Multiprocessing and Multithreading Configuration
Multithreading and multiprocessing enable efficient loading and resource distribution by integrating streaming data with
historical data to make real-time predictions. Multithreading is a method of program execution that reduces the overhead of
the operating system by sharing memory across threads (units of program execution) to enable concurrent application or task
execution. Generally, this process differs from multiprocessing, which can be defined as either the use of multiple CPUs within
a system or the ability of a system to support more than one processor and allocate tasks between them. However, these
definitions can vary in relation to how a CPU is defined.

Both multithreading and multiprocessing are deployed in the model used with the addition of Message Passing Interface (MPI)
– a program that allows users to specify their own multiprocessing steps. By using MPI function calls, multithreading and
multiprocessing were applied to capture movie frames in multiple video files which enabled the effective use of computing
resources.

4. Transfer Learning & Modeling Process
Transfer learning refers to a process whereby previously trained models are applied to new datasets. In addition to reducing
the training data requirements, transfer learning provides time-savings and more efficient options for modeling.

Some deep learning platforms like TensorFlow and Caffe make it easy to implement transfer learning out of the box by offering
common pre-trained models for computer vision including ResNet, FaceNet, and SqueezeNet. Additionally, companies like Intel
provide pretrained, downloadable models for different deep learning frameworks such as Caffe, TensorFlow, MxNet, and Open
Neural Network Exchange (ONYX) via Model Zoo. Intel also supports multiple image classification networks such as AlexNet,
GoogLeNet, VGG and ResNet families of networks, fully convolutional networks like FCN8 used for image segmentation, and
object detection networks like Faster R-CNN.

The facial recognition, pose estimation, Gender & Age Detection pre-trained models (ResNet & FaceNet) were leveraged and
optimized using Intel’s OpenVINO software. These optimized models were further customized through transfer learning for the
proof of concept.

1 Edge detection that requires matching to a reference or structure from motion, may call for specific hardware and computational resources
and domain expertise to understand how to implement ML and DL algorithms due to insufficient quantity of training data.

http://docs.openvinotoolkit.org/latest/_docs_Pre_Trained_Models.html
http://docs.openvinotoolkit.org/latest/_docs_Pre_Trained_Models.html

5

5. OpenVINO Transformation & Configuration for the Model Optimizer
For many years DL algorithms for CV were impractical due to their computationally intensive nature and the hardware
limitations of the time. More recently, specialized hardware has been introduced designed specifically for CV applications like
Vision Processing Units (VPUs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs) which
dramatically improve the performance of such algorithms by utilizing a concept known as parallel processing, or the
simultaneous execution of tasks on multiple processors. Even with specialized hardware in place, it is critical to optimize the
implementation of your model on your physical processors to maximize modeling performance and avoid processing
bottlenecks.

Our approach for the implementation of CNNs utilizes Intel’s OpenVINO software to maximize performance by automatically
optimizing around hardware and compute parameters, including management of software dependencies, for CPU, GPU, and
VPU execution. OpenVINO achieved performance improvements by reviewing how each CNN layer is represented in the
memory, computing the redundant layer processing cost, and removing redundancies. The resulting model is better at utilizing
allocated resources.

Using Model Optimizer to Generate Intermediate Representation
The Model Optimizer receives input models from TensorFlow, Caffe, etc. and outputs the Intermediate Representation (IR) that
is used as an input to the Inference Engine (IE). In standard data science modeling techniques, a trained model is directly used
for inference without being optimized for performance. OpenVINO Model Optimizer, on the other hand, transforms the model
into IR where the code is transformed into .XML and .Bin files. The XML file contains the network architecture; the binary file
contains the weights and biases. The Model Optimizer removes parts of the network that are not required for inference and
reshuffles the neural network operations for efficiency. In this process, some operations are reduced into a single operation.

6. Inference Engine / Parallel Processing in SMT
Inference Engine (IE) is a run-time API software layer that handles the execution of an optimized model on a target Intel
hardware platform. IE optimizes the model by making a blob representation of the model in the memory. IE handles the
execution of optimized models on selected hardware.

Parallel Processing was implemented using Message Passing Interface (MPI). MPI is part of parallel programming, is
standardized and is designed to work on multiple platforms and multiple architectures (common ones being High-Performance
Computing such as Cray systems, IBM, SGI, Cloud and other clusters). It can also be implemented in various programming
languages (common ones being C++, Python and Java).

As the job becomes bigger, MPI effectively distributes the running job or process across the cores. Because of this, MPI
becomes more efficient with less overhead compared to shared memory approaches like OpenMPI (also another parallel
programming approach). MPI is not as effective on small workloads.

We implemented MPI to distribute the workload consisting of multiple video files using function calls of Scatter, Allgather, and
Gather. OpenVINO demonstrated effective multiprocessing of the files using python libraries like the python multiprocessing
module with Pool.

MPI was also utilized to process multiple input sources. Live input like webcam/camera and video streaming is broadcasted and
displayed on an assigned root process while video files are processed in parallel and remaining processes are in the MPI
communicator.

7. Application Deployment and Analytics
Deploying a CV solution requires a solid understanding of lifecycle management requirements as shown in Exhibit 5. A key
factor for successful application deployment is to identify stakeholders and users who will be supporting the system. The
platform needs to be architected for security and scalability, and the implementation can be sequenced to enable future-state
business processes, all contributing to a successful CV application. It is suggested that having a phased deployment approach to
deliver a solution in an orderly and incremental manner, without impacting current business activities, will result in a low-risk
solution implementation. Having a solution support team who are well trained and well versed in analytics will likely contribute
to high user satisfaction and opportunities for feedback and ongoing improvements.

6

EXHIBIT 5 | Management L ifecycle

CVSA Deployment Considerations
When deploying a computer vision solution, it is important to understand there are other factors that must be considered
outside of the technical choices, such as what algorithms to run or which sets of data to use. These factors impact the business
and must be considered for a successful deployment. Several of these factors that implement the solution are described in
Exhibit 6.

EXHIBIT 6 | Considerations for Vis ion Analyt ics Deployment

Criteria Key Considerations
Business strategic goals Establish regular touchpoints with stakeholders to align the solution to business

needs. The refactor model needs to be dynamic enough so that it can be
adjusted to the changing business goals and needs without requiring new
development from scratch. The solution should be flexible enough to work with
available resources to the business and offer more insight for future investment
if desired by the business.

Readiness of certain end-user groups and
training data.

The performance and accuracy of CV model predictions largely depend on the
training data. The training data must be representative of most, if not all the
case scenarios and structures of the data. It requires decisions on what is the
right data to collect, how to filter and process the data before inputting it in the
model, whether to use pre-trained models, and how to adjust these models to
better fit your data and needs.

Readiness and availability of user groups
for design, testing and validation

Avoid underfitting, where the model has very low accuracy, which is normally
caused by a lack of training data or poor selection of hyperparameters. Avoid
overfitting where the model is only memorizing with nearly perfect prediction,
which could be misleading in future uses. This is usually caused by the mixing of
training data and validation data.

Analytics and ongoing operations The model’s performance and accuracy should be able to improve over time and
such metrics should be captured. Variations between training and validation
data should be constantly measured for continuous adjustments. Use analytics
to monitor trends and apply machine learning for predictive analytics.

7

Results and Analysis
The following results show deep learning model implementations of CV using the OpenVINO™ toolkit and other comparison
methods on CPU. This use case is focused and evaluated on the hardware optimization of DL model processing, not enhancing
the accuracy of the DL models.

Test Case #1: Single file processing results for Age & Gender Detection Model on CPU
We ran the Age & Gender Detection model on the promotional movie trailer of Troy in three configurations: OpenVINO™,
Multithreading, and Other (standard, no hardware acceleration). The OpenVINO™ configuration captured more frames per
second (FPS) than the other two methods with a faster run time. Exhibit 7 illustrates OpenVINO’s performance advantage in
single file processing operations.

EXHIBIT 7 | TROY, AGE AND GENDER, SINGLE FILE PERFORMANCE

Test Case #2: Multiple Model Processing on CPU
The results of simultaneously running different combinations of multiple models (Facial Recognition only, Age & Gender
Detection, and Age & Gender Detection plus Pose Estimation) for the OpenVino and Multithreading configurations demonstrate
that using a toolkit like OpenVINO can enhance vision processing (See Exhibit 8.).

EXHIBIT 8 | PERFORMANCE IMPROVEMENT FROM MULTITHREADED TO OPENVINO ACROSS USE CASES

The number of models applied simultaneously influenced the number of frames captured. Comparing the two configurations,
OpenVINO’ s performance surpassed the Multithreading by capturing more frames per seconds (FPS) for all models.

12

37

45

0

10

20

30

40

50

Standard - No Acceleration Multithreaded OpenVINO

Fr
am

es
 P

er
 S

ec
on

d
(h

ig
he

r i
s b

et
te

r)

TROY, AGE AND GENDER, SINGLE FILE PERFORMANCE

47

100

35.8
52

30
47

0
20
40
60
80

100
120

Multithreaded OpenVino Multithreaded OpenVino Multithreaded OpenVino

Face Detection Age and Gender Age, Gender, and Pose

Fr
am

es
 P

er
 S

ec
on

d
(h

ig
he

r i
s b

et
te

r)

PERFORMANCE IMPROVEMENT FROM MULTITHREADED TO
OPENVINO ACROSS USE CASES

8

Test Case #3: Multiple Files Processing with Age & Gender Detection on CPU
The following table shows the results of running the Age & Gender Detection model on multiple input files concurrently. The
three input videos are trailers for the movies Troy, Iron Lady, Kramer vs. Kramer. Results are compared below with different
approaches: OpenVINO™ and MPI, MPI, Multithreading and MPI, and Multiprocessing without OpenVINO/Multithreading. This
test was conducted with multiprocessing one online video of Troy and one webcam streaming.

EXHIBIT 9 | COMPARISON FOR MULTIPROCESSING SEVERAL STREAMS AT A TIME

OpenVINO running 3 processes simultaneously captured more FPS as shown above. OpenVINO was also tested in
heterogeneous environments: CPU, and CPU/VPU. Both environments used face detection, age and gender, and pose
estimation models. For this trial, the hardware performance showed varied results based on the hardware assignment of each
combination of models.

Conclusion
The Computer Vision Solutions Architecture mitigates some of the typical machine learning challenges through utilizing Intel’s
OpenVINO software, which both accelerated development time due to its library of pre-trained models and optimized
performance hardware and compute parameters, including management of software dependencies, for CPU, GPU, and VPU
execution. OpenVINO demonstrated superior performance in Frames per Second across the three different use cases utilized
for benchmarking: 1) Facial Recognition, 2) Age & Gender Detection, and 3) Pose Estimation. Each phase of the architecture can
be tailored to meet the client’s needs and business process as organizations advanced towards advanced analytics.

This architecture describes an approach that was designed to accelerate the development of Computer Vision based solutions.
It is believed that the use of computer vision will continue to grow as private and public institutions increasingly rely on vision
solutions to automatically evaluate images and videos (sometimes in real-time) in the support of operations, customer services,
or public safety. As the number of devices proliferates and size and quality of image/video feeds increase, having an optimized
high-performance architecture can potentially help organizations scale faster, make quicker decisions, and more effectively
actualize an organization's mission.

18
15

12

6

0

5

10

15

20

OpenVino and MPI MPI-multiple sources* Multithreaded and MPI Multiprocessing

Fr
am

es
 P

er
 S

ec
on

d
(h

ig
he

r i
s b

et
te

r)

COMPARISON FOR MULTIPROCESSING SEVERAL STREAMS AT A
TIME

9

Let's Talk
Reach out to our team to request a demo and learn more about the computer vision solution architecture and how it can
help you transform your organization.

Contacts:

Vishal Kapur
Principal
Deloitte Consulting LLP
vkapur@deloitte.com
+1.571.814.7510

Doug Bourgeois
Managing Director
Deloitte Consulting LLP
dbourgeois@deloitte.com
+1.571.814.7157

As used in this document, “Deloitte” means Deloitte Consulting LLP, a subsidiary of Deloitte LLP. Please see www.deloitte.com/us/about for
a detailed description of our legal structure. Certain services may not be available to attest clients under the rules and regulations of public
accounting.

This publication contains general information only and Deloitte is not, by means of this publication, rendering accounting, business,
financial, investment, legal, tax, or other professional advice or services. This publication is not a substitute for such professional advice or
services, nor should it be used as a basis for any decision or action that may affect your business. Before making any decision or taking any
action that may affect your business, you should consult a qualified professional advisor. Deloitte shall not be responsible for any loss
sustained by any person who relies on this publication.

Copyright © 2019 Deloitte Development LLC. All rights reserved.

mailto:dbourgeois@deloitte.com
mailto:dbourgeois@deloitte.com
mailto:dbourgeois@deloitte.com
mailto:dbourgeois@deloitte.com

10

Appendix A: Hardware, Software, Computer Vision and Deep
Learning Configuration for Use Cases:
The following table demonstrates the hardware and software used in the testing and development of this solutions
architecture.

Type Component Product /
Version

Description

Hardware CPU Linux OS -
Lambda
Laptop

A laptop designed for running deep learning models
Intel i7-8750H (6 Cores, 2.20GHz)
Ubuntu 16.04 LTS

Hardware Visual
Processing
Unit (VPU)

Intel
Movidius
Compute
Stick 2

The Myriad X VPU is a high-speed and power-efficient solution that brings
advanced vision and artificial intelligence applications to devices
Class-leading performance in computer vision and deep neural network
inferencing applications

Software OpenVINO™
Toolkit

2019 OpenVINO™ ™ toolkit, short for Open Visual Inference and Neural Network
Optimization toolkit, provides developers with improved neural network
performance on a variety of Intel® processors and helps them further unlock
cost-effective, real-time vision applications. The toolkit enables deep
learning inference and easy heterogeneous execution across multiple Intel®
platforms (CPU, Intel® Processor Graphics)—providing implementations
across cloud architectures to edge devices.

Software Visual
Studio

2019 Microsoft Visual Studio is an integrated development environment from
Microsoft that is used to build applications. MS build is included in the
configuration for OpenVINO™ and is a free and open-source build toolset for
managed code such as native C++ code

Software CMake 3.4 CMake is an open-source, cross-platform family of tools designed to build,
test and package software. CMake is used to control the software
compilation process using simple platform and compiler independent
configuration files and generate native makefiles and workspaces that can
be used in the compiler environment. (source: https://cmake.org/)

Language Python 3.6.5 Python is an open-source general-purpose programing language. The 3.6.5
version is compatible with the OpenVINO™ toolkit.

Language C++ C++ is an open-source general-purpose programming language that was
developed by Bjarne Stroustrup and offered as part of the OpenVINO™ use
cases.

Programming
Library

OpenCV OpenCV is an open-source library of programming functions developed by
Intel that aims at real-time computer vision using deep learning frameworks
such as TensorFlow, PyTorch, and Caffe.

Programming
Process and
Library

MPICH and
MPI4py

 Multi_scatter and MPI_Allgather
Packages needed to run MPI
MPICH: https://www.mpich.org/downloads/
Python MPI4py: https://mpi4py.readthedocs.io/en/stable/

https://cmake.org/
https://cmake.org/
https://www.mpich.org/downloads/
https://www.mpich.org/downloads/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/

	Computer Vision Solutions Architecture (CVSA)
	Computer Vision Solutions Architecture (CVSA)
	CVSA Operationalization: Facial Recognition, Age & Gender Detection, and Pose Estimation
	CVSA Operationalization: Facial Recognition, Age & Gender Detection, and Pose Estimation
	CVSA Model Use Case Breakdown
	CVSA Model Use Case Breakdown
	1. Data Ingestion
	1. Data Ingestion
	2. Data Preprocessing / Multiprocessing
	2. Data Preprocessing / Multiprocessing
	Collecting Training Data
	Collecting Training Data
	Input Selection for Modeling
	Input Selection for Modeling

	3. Multiprocessing and Multithreading Configuration
	3. Multiprocessing and Multithreading Configuration
	4. Transfer Learning & Modeling Process
	4. Transfer Learning & Modeling Process
	5. OpenVINO Transformation & Configuration for the Model Optimizer
	5. OpenVINO Transformation & Configuration for the Model Optimizer
	5. OpenVINO Transformation & Configuration for the Model Optimizer
	Using Model Optimizer to Generate Intermediate Representation
	Using Model Optimizer to Generate Intermediate Representation

	6. Inference Engine / Parallel Processing in SMT
	6. Inference Engine / Parallel Processing in SMT
	7. Application Deployment and Analytics
	7. Application Deployment and Analytics

	CVSA Deployment Considerations
	CVSA Deployment Considerations
	Results and Analysis
	Results and Analysis
	Results and Analysis
	Test Case #1: Single file processing results for Age & Gender Detection Model on CPU
	Test Case #1: Single file processing results for Age & Gender Detection Model on CPU
	Test Case #2: Multiple Model Processing on CPU
	Test Case #2: Multiple Model Processing on CPU
	Test Case #3: Multiple Files Processing with Age & Gender Detection on CPU
	Test Case #3: Multiple Files Processing with Age & Gender Detection on CPU
	Test Case #3: Multiple Files Processing with Age & Gender Detection on CPU

	Conclusion
	Conclusion
	Let's Talk
	Let's Talk

