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VISION ANALYTICS 

AI Computer Vision Solutions Architecture  
By Vishal Kapur, Douglas Bourgeois, Amina Jackson, Julie Kim, Taylor Jones, and Zachary Zweig 

 
apid development and implementation of Artificial Intelligence (AI) has enabled many organizations to act faster, improve 
mission outcomes, and reduce costs. As part of this adoption trend, clients are increasingly requiring automated analytics 
solutions that can generate accurate and meaningful insights to meet new business trends and customer demands.  

One such example, Computer Vision (CV), utilizes AI to automatically process and analyze digital images or video files. This 
capability is derived from advanced machine learning (ML) techniques that can train algorithms to parse and perceive 
information contained within images or videos in much the same way humans ‘see’ – though CV can utilize inputs outside of 
the confines of our visible spectrum. As advancements in hardware, software, and machine learning toolkits make it easier to 
leverage real-time data and reduce latency, companies are focusing on computer vision applications to solve real-world 
problems in various fields. A few examples of CV capabilities include: 
 

Common Computer Vision Applications 
• Security and Surveillance – Collecting and analyzing security footage at scale (e.g. security at airports, malls, and 

military bases) 
• Asset Management – Remotely monitoring assets reduces costs, optimizes business processes and increases 

public safety (e.g., utility management, pothole detection, traffic monitoring) 
• Autonomous Vehicles – Unmanned Aerial Vehicles, Unmanned Underwater Vehicles, and Unmanned ground 

vehicles rely on computer vision to navigate their environments 
• Banking, Insurance, and Finance –ATM facial recognition access and services and home loan evaluation 
• Healthcare and Medical Research – Detecting and diagnosing diseases from radiology and pathology image 

results complement patient care and medical services 
• Retail and Advertising – Augmenting a shopper’s experience (e.g., targeted advertising) increases sales/revenues 

 
The remainder of this paper will focus on the development of a Computer Vision Solutions Architecture (CVSA) designed to 
accelerate the development of CV-based solutions. With an in-depth understanding of the requirements involved, this solution 
architecture can be used as a sample guide for getting started in developing or tailoring CV solutions to your client’s specific use 
case needs.  
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This architecture addresses typical machine learning challenges:  
• Real-time predictions can be limited due to processing time  
• Model underfitting: Can signify low accuracy in predictions, large data losses, or lack of training data 
• Model overfitting: Misleading results with high accuracy can be produced by mixing validation testing data with 

training data 
• In general, training the model for deep learning can be expensive in terms of time and cost 
• As data volumes increase processing time needs to be evaluated for feasibility  

Accompanying the solutions architecture are Facial Recognition, Age and Gender Detection, and Pose Estimation proofs-of-
concepts. In addition to demonstrating the solutions architecture’s value as an accelerator, this proof of concept facilitates a 
discussion around some of the technical considerations that must be adjudicated such as software and hardware 
configurations, performance optimization, and scalability. 

Computer Vision Solutions Architecture (CVSA) 
 
The Computer Vision Solutions Architecture (See Exhibit 1) is designed to build a simple computer vision solution and depicts 
different approaches taken to compare hardware performance. Because CV is a specific implementation of machine learning, 
execution requires typical ML pipelines e.g. data ingestion, data preprocessing, training, transfer-learning, feature engineering, 
hyper-parameter tuning, and model evaluation.  

EXHIBIT 1 | COMPUTER VISION SOLUTIONS ARCHITECTURE 

 

This CVSA relies primarily upon Convolutional Neural Networks (CNNs), a Deep Learning (DL) technique within the family of 
Recurrent Neural Networks (RNNs).   

Diverging pathways represent potential model configurations that vary in relation to the software, hardware, and ML 
techniques deployed depending on the specific requirements for which one must optimize. Details on the tradeoffs for each 
configuration will be included as the operationalized models are developed below. 
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CVSA Operationalization: Facial Recognition, Age & Gender Detection, and Pose Estimation 

In this paper, three different use cases are operationalized to demonstrate the effectiveness of the solutions architecture: 1) 
Facial Recognition, 2) Age & Gender Detection, and 3) Pose Estimation (a CV technique to identify body language through 
detecting the positions of key body joints in an image).  

Different motion picture files are used as input, with the simultaneous streaming of multiple movie trailers used as an analog to 
emulate a multi-device surveillance system (Exhibit 2). To demonstrate the effects of different combinations of hardware and 
software on performance, three different model configurations (Exhibit 3) are deployed and subjected to three different test 
cases (Exhibit 4).  

EXHIBIT 2 | DATA INPUTS AND SOURCE FORMATS FOR TEST CASES 

Movie Trailer Length Size Computer Vision Usage 
Troy 1 minute 28 seconds 16.1 MB Facial Recognition 
Iron Lady 2 minutes 19 seconds 12.9 MB Gender and Age Detection 
Kramer vs. Kramer 2 minute 32 seconds 11.9 MB Gender and Age Detection 
Webcam  1 minute N/A Real Time 
Troy (Streaming Online) 1 minute 30 seconds N/A Streaming Real-Time 

 

EXHIBIT 3 | CVSA CONFIGURATIONS 

Configuration Definition 
Intel 
OpenVINO 

Intel's Open Visual Inference & Neural Network Optimization (OpenVINO) is an open-source product that 
utilizes Convolutional Deep Neural Networks to enable and enhance deep learning and computer vision 
workloads. It supports heterogeneous execution across computer vision hardware accelerators (CPUs, 
GPUs, FPGAs, VPUs,) and maximizes performance for deep-learning workloads. 

Multi-
Threading 

A method of program execution that reduces the overhead of the operating system by sharing memory 
across threads (units of program execution) resulting in a faster execution, thereby maximizing computer 
resources through application programming techniques. 

Standard - 
No 
Acceleration 

Using computing resources without applying performance optimization at the code level nor at the 
hardware level.  Execution can be performed either on-premise or with a large cloud platform provider 
such as Google, Amazon, and Microsoft which offer access to their respective computer vision APIs to 
create specialized processes/applications.   

 

EXHIBIT 4 | CVSA TEST CASES 

Test Case Definition 
Single File Processing Age and Gender Detection for each of the three configurations. 
Multiple Model Processing Simultaneous processing of combinations of use case models (Facial Recognition, Age & 

Gender Detection, Pose Estimation) for each of three configurations. 
Multiple File Processing Simultaneous processing of multiple files with the same use case model (Age & Gender 

Detection) for each of the three configurations. 
 

For each configuration and test case, the host system is an on-premise Linux OS. However, clients have flexibility in choosing 
whether to use their own on-premise system or a major cloud service provider (CSP) such as Amazon Web Services (AWS), 
Google Cloud Platform (GCP), or Microsoft Azure.  
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CVSA Model Use Case Breakdown 
1. Data Ingestion 
The data ingestion phase consists of configuring a predetermined data set(s) to serve as input(s) to the CV model. These data 
sets, in the form of digital images or video files, can be collected from various sources and include both static files as well as 
real-time streaming from surveillance devices, aerial/satellite systems, or edge/IoT devices.1 For the purposes of this paper, the 
data that will be ingested are from the data inputs show in exhibit 2. 

2. Data Preprocessing / Multiprocessing 
Data preprocessing is the process of collecting training data, cleaning data, and then preparing data to load into a model.  

Collecting Training Data  
Before a model can be trained, training data sets must first be acquired. Such data sets can be sourced from a variety of places 
or created from scratch using a developer’s own image repositories. Google Image API was utilized for the tests conducted in 
this solutions architecture because of the ease of image retrieval from Google’s image repository. For this proof of concept, 
images of actors were automatically collected and stored in a designated file system. These actors correspond to those who 
appeared in the movies being tested. Alternatively, in a real-world surveillance example, a repository of permitted personnel 
and/or known bad actors can be used as a training set to recognize persons of interest. 

Input Selection for Modeling 
After the training data is collected, it is inspected for appropriate actor images to be used as model inputs. For the purposes of 
this study, any images containing multiple persons are deleted from the input collection. The selected images are then called 
from the program (using Python or C++), realign for facial landmark localization, and resized to fit the requirements of the CNN 
(Frame x 750 pixels - width) used. Others may use any of a variety of algorithms for realignment and can set up a separate file 
server or a cloud instance for storing the input and output result files.    

3. Multiprocessing and Multithreading Configuration 
Multithreading and multiprocessing enable efficient loading and resource distribution by integrating streaming data with 
historical data to make real-time predictions. Multithreading is a method of program execution that reduces the overhead of 
the operating system by sharing memory across threads (units of program execution) to enable concurrent application or task 
execution.  Generally, this process differs from multiprocessing, which can be defined as either the use of multiple CPUs within 
a system or the ability of a system to support more than one processor and allocate tasks between them. However, these 
definitions can vary in relation to how a CPU is defined.  

Both multithreading and multiprocessing are deployed in the model used with the addition of Message Passing Interface (MPI) 
– a program that allows users to specify their own multiprocessing steps. By using MPI function calls, multithreading and 
multiprocessing were applied to capture movie frames in multiple video files which enabled the effective use of computing 
resources.   

4. Transfer Learning & Modeling Process  
Transfer learning refers to a process whereby previously trained models are applied to new datasets. In addition to reducing 
the training data requirements, transfer learning provides time-savings and more efficient options for modeling.  

Some deep learning platforms like TensorFlow and Caffe make it easy to implement transfer learning out of the box by offering 
common pre-trained models for computer vision including ResNet, FaceNet, and SqueezeNet. Additionally, companies like Intel 
provide pretrained, downloadable models for different deep learning frameworks such as Caffe, TensorFlow, MxNet, and Open 
Neural Network Exchange (ONYX) via Model Zoo.  Intel also supports multiple image classification networks such as AlexNet, 
GoogLeNet, VGG and ResNet families of networks, fully convolutional networks like FCN8 used for image segmentation, and 
object detection networks like Faster R-CNN. 

The facial recognition, pose estimation, Gender & Age Detection pre-trained models (ResNet & FaceNet) were leveraged and 
optimized using Intel’s OpenVINO software.  These optimized models were further customized through transfer learning for the 
proof of concept. 

                                                           
1 Edge detection that requires matching to a reference or structure from motion, may call for specific hardware and computational resources 
and domain expertise to understand how to implement ML and DL algorithms due to insufficient quantity of training data. 

http://docs.openvinotoolkit.org/latest/_docs_Pre_Trained_Models.html
http://docs.openvinotoolkit.org/latest/_docs_Pre_Trained_Models.html
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5. OpenVINO Transformation & Configuration for the Model Optimizer 
For many years DL algorithms for CV were impractical due to their computationally intensive nature and the hardware 
limitations of the time. More recently, specialized hardware has been introduced designed specifically for CV applications like 
Vision Processing Units (VPUs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs) which 
dramatically improve the performance of such algorithms by utilizing a concept known as parallel processing, or the 
simultaneous execution of tasks on multiple processors. Even with specialized hardware in place, it is critical to optimize the 
implementation of your model on your physical processors to maximize modeling performance and avoid processing 
bottlenecks. 

Our approach for the implementation of CNNs utilizes Intel’s OpenVINO software to maximize performance by automatically 
optimizing around hardware and compute parameters, including management of software dependencies, for CPU, GPU, and 
VPU execution.  OpenVINO achieved performance improvements by reviewing how each CNN layer is represented in the 
memory, computing the redundant layer processing cost, and removing redundancies. The resulting model is better at utilizing 
allocated resources.   

Using Model Optimizer to Generate Intermediate Representation 
The Model Optimizer receives input models from TensorFlow, Caffe, etc. and outputs the Intermediate Representation (IR) that 
is used as an input to the Inference Engine (IE).  In standard data science modeling techniques, a trained model is directly used 
for inference without being optimized for performance. OpenVINO Model Optimizer, on the other hand, transforms the model 
into IR where the code is transformed into .XML and .Bin files. The XML file contains the network architecture; the binary file 
contains the weights and biases. The Model Optimizer removes parts of the network that are not required for inference and 
reshuffles the neural network operations for efficiency. In this process, some operations are reduced into a single operation.  

6. Inference Engine / Parallel Processing in SMT 
Inference Engine (IE) is a run-time API software layer that handles the execution of an optimized model on a target Intel 
hardware platform.  IE optimizes the model by making a blob representation of the model in the memory. IE handles the 
execution of optimized models on selected hardware.  

Parallel Processing was implemented using Message Passing Interface (MPI).  MPI is part of parallel programming, is 
standardized and is designed to work on multiple platforms and multiple architectures (common ones being High-Performance 
Computing such as Cray systems, IBM, SGI, Cloud and other clusters). It can also be implemented in various programming 
languages (common ones being C++, Python and Java). 

As the job becomes bigger, MPI effectively distributes the running job or process across the cores. Because of this, MPI 
becomes more efficient with less overhead compared to shared memory approaches like OpenMPI (also another parallel 
programming approach). MPI is not as effective on small workloads.  

We implemented MPI to distribute the workload consisting of multiple video files using function calls of Scatter, Allgather, and 
Gather. OpenVINO demonstrated effective multiprocessing of the files using python libraries like the python multiprocessing 
module with Pool.  

MPI was also utilized to process multiple input sources. Live input like webcam/camera and video streaming is broadcasted and 
displayed on an assigned root process while video files are processed in parallel and remaining processes are in the MPI 
communicator. 

7. Application Deployment and Analytics 
Deploying a CV solution requires a solid understanding of lifecycle management requirements as shown in Exhibit 5.  A key 
factor for successful application deployment is to identify stakeholders and users who will be supporting the system.  The 
platform needs to be architected for security and scalability, and the implementation can be sequenced to enable future-state 
business processes, all contributing to a successful CV application. It is suggested that having a phased deployment approach to 
deliver a solution in an orderly and incremental manner, without impacting current business activities, will result in a low-risk 
solution implementation. Having a solution support team who are well trained and well versed in analytics will likely contribute 
to high user satisfaction and opportunities for feedback and ongoing improvements.    
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EXHIBIT 5 | Management L ifecycle  

 

CVSA Deployment Considerations 
When deploying a computer vision solution, it is important to understand there are other factors that must be considered 
outside of the technical choices, such as what algorithms to run or which sets of data to use. These factors impact the business 
and must be considered for a successful deployment. Several of these factors that implement the solution are described in 
Exhibit 6.  

EXHIBIT 6 | Considerations for Vis ion Analyt ics Deployment  

Criteria  Key Considerations  
Business strategic goals Establish regular touchpoints with stakeholders to align the solution to business 

needs. The refactor model needs to be dynamic enough so that it can be 
adjusted to the changing business goals and needs without requiring new 
development from scratch. The solution should be flexible enough to work with 
available resources to the business and offer more insight for future investment 
if desired by the business. 

Readiness of certain end-user groups and 
training data. 

The performance and accuracy of CV model predictions largely depend on the 
training data. The training data must be representative of most, if not all the 
case scenarios and structures of the data. It requires decisions on what is the 
right data to collect, how to filter and process the data before inputting it in the 
model, whether to use pre-trained models, and how to adjust these models to 
better fit your data and needs. 

Readiness and availability of user groups 
for design, testing and validation 

Avoid underfitting, where the model has very low accuracy, which is normally 
caused by a lack of training data or poor selection of hyperparameters. Avoid 
overfitting where the model is only memorizing with nearly perfect prediction, 
which could be misleading in future uses. This is usually caused by the mixing of 
training data and validation data. 

Analytics and ongoing operations  The model’s performance and accuracy should be able to improve over time and 
such metrics should be captured. Variations between training and validation 
data should be constantly measured for continuous adjustments.  Use analytics 
to monitor trends and apply machine learning for predictive analytics.   
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Results and Analysis  
The following results show deep learning model implementations of CV using the OpenVINO™ toolkit and other comparison 
methods on CPU. This use case is focused and evaluated on the hardware optimization of DL model processing, not enhancing 
the accuracy of the DL models. 

Test Case #1: Single file processing results for Age & Gender Detection Model on CPU 
We ran the Age & Gender Detection model on the promotional movie trailer of Troy in three configurations: OpenVINO™, 
Multithreading, and Other (standard, no hardware acceleration). The OpenVINO™ configuration captured more frames per 
second (FPS) than the other two methods with a faster run time.  Exhibit 7 illustrates OpenVINO’s performance advantage in 
single file processing operations.  

EXHIBIT 7 | TROY, AGE AND GENDER, SINGLE FILE PERFORMANCE 

 

Test Case #2: Multiple Model Processing on CPU 
The results of simultaneously running different combinations of multiple models (Facial Recognition only, Age & Gender 
Detection, and Age & Gender Detection plus Pose Estimation) for the OpenVino and Multithreading configurations demonstrate 
that using a toolkit like OpenVINO can enhance vision processing (See Exhibit 8.). 

EXHIBIT 8 | PERFORMANCE IMPROVEMENT FROM MULTITHREADED TO OPENVINO ACROSS USE CASES 

 

The number of models applied simultaneously influenced the number of frames captured. Comparing the two configurations, 
OpenVINO’ s performance surpassed the Multithreading by capturing more frames per seconds (FPS) for all models. 
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Test Case #3: Multiple Files Processing with Age & Gender Detection on CPU 
The following table shows the results of running the Age & Gender Detection model on multiple input files concurrently. The 
three input videos are trailers for the movies Troy, Iron Lady, Kramer vs. Kramer. Results are compared below with different 
approaches: OpenVINO™ and MPI, MPI, Multithreading and MPI, and Multiprocessing without OpenVINO/Multithreading. This 
test was conducted with multiprocessing one online video of Troy and one webcam streaming.  

EXHIBIT 9 | COMPARISON FOR MULTIPROCESSING SEVERAL STREAMS AT A TIME 

 

OpenVINO running 3 processes simultaneously captured more FPS as shown above. OpenVINO was also tested in 
heterogeneous environments: CPU, and CPU/VPU. Both environments used face detection, age and gender, and pose 
estimation models. For this trial, the hardware performance showed varied results based on the hardware assignment of each 
combination of models. 

Conclusion  
The Computer Vision Solutions Architecture mitigates some of the typical machine learning challenges through utilizing Intel’s 
OpenVINO software, which both accelerated development time due to its library of pre-trained models and optimized 
performance hardware and compute parameters, including management of software dependencies, for CPU, GPU, and VPU 
execution.  OpenVINO demonstrated superior performance in Frames per Second across the three different use cases utilized 
for benchmarking: 1) Facial Recognition, 2) Age & Gender Detection, and 3) Pose Estimation. Each phase of the architecture can 
be tailored to meet the client’s needs and business process as organizations advanced towards advanced analytics.   

This architecture describes an approach that was designed to accelerate the development of Computer Vision based solutions.  
It is believed that the use of computer vision will continue to grow as private and public institutions increasingly rely on vision 
solutions to automatically evaluate images and videos (sometimes in real-time) in the support of operations, customer services, 
or public safety.  As the number of devices proliferates and size and quality of image/video feeds increase, having an optimized 
high-performance architecture can potentially help organizations scale faster, make quicker decisions, and more effectively 
actualize an organization's mission. 
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Let's Talk 
Reach out to our team to request a demo and learn more about the computer vision solution architecture and how it can 
help you transform your organization. 

Contacts: 

Vishal Kapur   
Principal   
Deloitte Consulting LLP 
vkapur@deloitte.com 
+1.571.814.7510 

Doug Bourgeois 
Managing Director 
Deloitte Consulting LLP 
dbourgeois@deloitte.com
+1.571.814.7157 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As used in this document, “Deloitte” means Deloitte Consulting LLP, a subsidiary of Deloitte LLP. Please see www.deloitte.com/us/about for 
a detailed description of our legal structure. Certain services may not be available to attest clients under the rules and regulations of public 
accounting. 
 
This publication contains general information only and Deloitte is not, by means of this publication, rendering accounting, business, 
financial, investment, legal, tax, or other professional advice or services. This publication is not a substitute for such professional advice or 
services, nor should it be used as a basis for any decision or action that may affect your business. Before making any decision or taking any 
action that may affect your business, you should consult a qualified professional advisor. Deloitte shall not be responsible for any loss 
sustained by any person who relies on this publication. 
 
Copyright © 2019 Deloitte Development LLC. All rights reserved.  
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Appendix A: Hardware, Software, Computer Vision and Deep 
Learning Configuration for Use Cases:  
The following table demonstrates the hardware and software used in the testing and development of this solutions 
architecture. 

Type Component Product / 
Version 

Description 

Hardware CPU Linux OS - 
Lambda 
Laptop 

A laptop designed for running deep learning models 
Intel i7-8750H (6 Cores, 2.20GHz) 
Ubuntu 16.04 LTS 

Hardware Visual 
Processing 
Unit (VPU) 

Intel 
Movidius 
Compute 
Stick 2  

The Myriad X VPU is a high-speed and power-efficient solution that brings 
advanced vision and artificial intelligence applications to devices 
Class-leading performance in computer vision and deep neural network 
inferencing applications 

Software OpenVINO™ 
Toolkit 

2019 OpenVINO™ ™ toolkit, short for Open Visual Inference and Neural Network 
Optimization toolkit, provides developers with improved neural network 
performance on a variety of Intel® processors and helps them further unlock 
cost-effective, real-time vision applications. The toolkit enables deep 
learning inference and easy heterogeneous execution across multiple Intel® 
platforms (CPU, Intel® Processor Graphics)—providing implementations 
across cloud architectures to edge devices. 

Software Visual 
Studio 

2019 Microsoft Visual Studio is an integrated development environment from 
Microsoft that is used to build applications. MS build is included in the 
configuration for OpenVINO™ and is a free and open-source build toolset for 
managed code such as native C++ code 

Software CMake 3.4 CMake is an open-source, cross-platform family of tools designed to build, 
test and package software. CMake is used to control the software 
compilation process using simple platform and compiler independent 
configuration files and generate native makefiles and workspaces that can 
be used in the compiler environment. (source: https://cmake.org/) 

Language Python 3.6.5 Python is an open-source general-purpose programing language. The 3.6.5 
version is compatible with the OpenVINO™ toolkit. 

Language C++  C++ is an open-source general-purpose programming language that was 
developed by Bjarne Stroustrup and offered as part of the OpenVINO™ use 
cases. 

Programming 
Library 

OpenCV  OpenCV is an open-source library of programming functions developed by 
Intel that aims at real-time computer vision using deep learning frameworks 
such as TensorFlow, PyTorch, and Caffe. 

Programming 
Process and 
Library 

MPICH and 
MPI4py 

 Multi_scatter and MPI_Allgather 
Packages needed to run MPI 
MPICH: https://www.mpich.org/downloads/  
Python MPI4py: https://mpi4py.readthedocs.io/en/stable/  

 

https://cmake.org/
https://cmake.org/
https://www.mpich.org/downloads/
https://www.mpich.org/downloads/
https://mpi4py.readthedocs.io/en/stable/
https://mpi4py.readthedocs.io/en/stable/
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