
Zero Day Threat Detection Using Metric Learning
Autoencoders

Dhruv Nandakumara, Robert Schillera, Christopher Redino∗a,
Kevin Choia, Abdul Rahmana, Edward Bowena, Marc Vucovicha

Joe Nehilaa, Matthew Weeks, Aaron Shaha
aDeloitte & Touche LLP

∗Corresponding author: credino@deloitte.com

Abstract—The proliferation of zero-day threats (ZDTs) to
companies’ networks has been immensely costly and requires
novel methods to scan traffic for malicious behavior at massive
scale. The diverse nature of normal behavior along with the
huge landscape of attack types makes deep learning methods
an attractive option for their ability to capture highly-nonlinear
behavior patterns. In this paper, the authors demonstrate an
improvement upon a previously introduced methodology, which
used a dual-autoencoder approach to identify ZDTs in network
flow telemetry. In addition to the previously-introduced asset-
level graph features, which help abstractly represent the role
of a host in its network, this new model uses metric learning
to train the second autoencoder on labeled attack data. This
not only produces stronger performance, but it has the added
advantage of improving the interpretability of the model by
allowing for multiclass classification in the latent space. This can
potentially save human threat hunters time when they investigate
predicted ZDTs by showing them which known attack classes
were nearby in the latent space. The models presented here are
also trained and evaluated with two more datasets, and continue
to show promising results even when generalizing to new network
topologies.

I. INTRODUCTION

Cyber attacks on enterprise networks are dramatically in-
creasing in frequency, scale, and complexity [1]. The year
2021 saw a record breaking 623 million cyber attacks globally,
a 98% increase over the previous year [2]. A large proportion
of such attacks are performed using novel tactics, techniques,
and procedures (TTPs) and are known as Zero-Day attacks or
threats. Henceforth, we define ZDTs as any novel TTP used
with malicious intent on cyber systems. While current trends in
cyber-security indicate that organizations are steadily detecting
more ZDTs every year, the types of vulnerabilities discovered
as a cause of said attacks remained the same [3]. Traditional
signature-based approaches to identifying cyber attacks are,
by definition, designed to detect known patterns of threats and
are ineffective against completely novel threats. Furthermore,
the immense volume and intricacy of cyber-security telemetry
make manual, unaided, threat hunting infeasible for security
operators. These factors necessitate the use of more advanced
anomaly detection, such as those offered by modern machine
learning techniques, that can quickly and reliably analyze
petabyte-scale data volumes for potential ZDTs.

Machine learning based methods for cyber anomaly de-
tection have shown promising results in ZDT detection by

successfully baselining ’normal’ network flow behavior in
order to detect abnormal behavior that may be indicative
of a cyber attack. However, while these approaches are ef-
fective at cyber anomaly detection, they tend to generalize
to novel network topologies poorly and are also inherently
ineffective at differentiating between known cyber anomalies
and ZDTs. Furthermore, the increasing variety of cyber attack
TTPs have also proven challenging for traditional anomaly
detection approaches, which tend to perform poorly when
identifying anomalies outside of classes with low support
during training. In this paper, we introduce a novel tech-
nique for ZDT detection on network-flow telemetry that has
demonstrably detected ZDTs on real enterprise-telemetry. The
technique utilizes a dual-autoencoder architecture for anomaly
and novelty detection respectively and has shown strong
performance in identifying novel cyber threats in new network
topologies without retraining. Furthermore, we augment the
dual autoencoder approach with metric learning to help the
models adapt to high attack type variety and class imbalance
during inference. Overall, the key contributions of this paper
are as follows:

1) A dual-autoencoder based approach to ZDT detection
that utilizes metric learning to segregate novel threats
from those seen during training despite low support and
high attack variety and achieves stronger performance
than other ZDT detection approaches seen in literature.

2) A novel approach to attack type attribution and model
interpretability that enables security operators to identify
the closest attack type to a ZDT for easy threat hunting.

3) Models are trained and evaluated on enterprise scale se-
curity telemetry and have shown success in generalizing
and identifying ZDTs in near-real time on novel network
topologies.

The remainder of this paper includes a Literature Review
discussing previous work in the ZDT detection field so far,
followed by a brief overview of the concepts covered in the
work. We then describe the methodology’s implementation
details, experimental design, and results before closing with
discussion and conclusion sections.

II. LITERATURE REVIEW

While statistical methods have long been used to catch
known cyber threats, their utility for systematically identifying

ar
X

iv
:2

21
1.

00
44

1v
1 

 [
cs

.C
R

] 
 1

 N
ov

 2
02

2



TABLE I: Datasets Used For Training and Evaluation

Dataset Description Notes
MAWI Archive
(MAWI)

Real network packet capture (PCAP) data from hun-
dreds of devices across 12 universities in Japan.

Flow data for 7 consecutive days from 2021, and 1 day from 2016
were used from a dataset of over 14 years. Dataset is not labelled but
is considered benign due to the extreme class imbalance of anomalies
in real-world networks.

National Colle-
giate Cyber De-
fense Competi-
tion (NCCDC)

Consists of labelled blue-team and red-team data from
real attack simulations on a cyber range.

Data spanned two consecutive days in 2020 and in 2021. Attack types
consist of network scanning, interrogation, botnet, and command and
control.

ISOT Botnet
Dataset (ISOT)

Data consists of benign and botent network traffic. Botnet activity comes from the Storm and Waladec botnets. This is
merged with captured real-world benign traffic from Lawrence Berkeley
National Laboratory (LBNL) to produce a dataset with both benign and
malicious activity [4].

ISCX IDS
Evaluation
Dataset (ISCX)

Data consists of benign and botnet network traffic. Real-world traffic was analyzed to generate profiles for different types
of agents. These profiles were then used to generate synthetic traffic
mimicking the real agents and containing both benign and malicious
activity [5].

Organizational
Internal Flow
(OIF)

Data consists of real internal network traffic from mul-
tiple locations.

Flow data for 7 consecutive days was used. Dataset is not labelled but
is considered benign due to the extreme class imbalance of anomalies
in real-world networks.

Organization
Malware Lab
(Codex)

Data consists of network data of over 100 million flows
over 5 years from hundreds of real malware sample
detonations in our internal malware cyber-range.

Dataset is labelled with malware class name, and was correlated with
threat intelligence to extract higher level attack-type labels includ-
ing botnets, ransomware, infostealer, e.g.. Data did not contain non-
malicious flows.

ZDTs has recently gained attention. There has been work
in detecting ZDTs using methods including, but not limited
to, rules-based approaches as well as unsupervised clustering
methods using malware opcode sequences [6] and Bayesian
classifiers [7]. Many authors have focused, as we do in this
work, on using network flow data to detect ZDTs. Lobato,
Lopez, et al. [8] utilized supervised machine learning ap-
proaches such as support vector machines to classify network
flow telemetry as malicious or benign using an adaptive
data modeling and pipeline approach with promising results,
achieving precision and recall values between 0.66 and 0.97.
Blaise et al. [9] utilized network flow telemetry to identify
ZDTs using an unsupervised approach that identifies anoma-
lous port usage. Sarhan et al. [10] also utilized network flow
telemetry to identify ZDTs using a zero-shot learning approach
with random forest and neural network models using a novel
data splitting approach to hold out attack classes as ZDTs to
measure performance.

Autoencoders have shown particular promise for identifying
ZDTs because of their success as anomaly detectors. An
autoencoder is a neural network consisting of an encoder,
whose layers successively compress the size of the input data,
and a decoder, which attempts to reconstruct the input from
the compressed version. By training with only normal data, the
autoencoder is taught to correctly reconstruct normal events
and should produce a higher mean-squared error between
the input and reconstruction when predicting anomalous data.
Hindy et al. [11], Yousefi-azar et al. [12], and An and Cho [13]
demonstrated the effectiveness of autoencoders trained on net-
work telemetry data for intrusion detection, achieving strong
precision and recall values compared to traditional methods
such as RF models. Zhang et al. [14] also utilized a modified
autoencoder with semantic segmentation of attack types in
natural language to identify ZDTs with strong accuracy values

up to 0.88 as compared to other methods. However, the above
studies are all limited to single autoencoder models performing
anomaly detection after being trained on benign data, and
only utilize flow-based features or semantic representations
of said features. Redino et al. previously demonstrated the
efficacy of a dual-autoencoder approach at identifying ZDTs,
especially when paired with asset-level graph features which
help abstract the roles of individual Internet Protocol (IP)
addresses to multiple networks; this model was able to achieve
precision and recall values of 0.83 and 0.63, respectively, on
realistic testing data, outperforming both traditional methods
and naive deep learning models [15].

While autoencoders have generally performed well at iden-
tifying novel threats, they have no inherent concept of the
different classes of threats they see in training. This means
that the latent space, the space containing the compressed
data after passing through the encoder, can be chaotic, with
vectors representing completely different classes of behavior
placed near each other. Forcing the network to produce a
more organized latent space, with clusters of similar behavior,
presents several advantages. It teaches the network to extract
the similarities between events within a particular class, and it
helps to avoid posterior collapse, a situation where the encoder
compresses the input data to an even smaller dimension than
desired and destroys necessary information for the decoder. It
also admits the possibility of performing multiclass classifica-
tion on events based on their latent-space representations as a
post-processing step, which could be useful to operators trying
to understand the model’s final output by providing added
context of attack type attribution. Deep metric learning can be
used to introduce order to the latent space by forcing models
to make meaningful embeddings of classes by separating and
clustering them, and has already gained significant traction
for outlier detection in fields such as image recognition.



Fig. 1: High-Level Architecture [15]

In the cyber domain, Qu et al. specifically showed that a
single autoencoder trained with metric learning could learn to
identify anomalous behavior in Transmission Control Protocol
(TCP) traffic better than baseline models [16]. Andresini,
Apprice, and Malerba used a combination of two autoencoders
and a separate classifier trained with triplet learning to iden-
tify known network intrusions, outperforming various state-
of-the-art Intrusion Detection Systems (IDS) models on the
NSL-KDD dataset [17]. Similarly, Wang et al. proposed a
fully-connected encoder which simultaneously optimizes the
multiclass classification loss and triplet loss, to achieve an
accuracy score of 0.81 on the same dataset [18]. Note that
neither of these previous two approaches are seeking ZDTs,
but their success further demonstrates the promise of metric
learning for attack class discrimination.

A significant drawback to many of these approaches is
the scarcity of realistic, labeled attack data for training and
evaluation. The commonly-used academic datasets do not
contain sufficient diversity of attack types to properly test how
the model performs on ZDTs. We aimed to test our models on
a variety of attack types and with data from multiple different
networks to ensure robustness and generalizability to new data.

III. METHODOLOGY

A. Datasets

Datasets were required to contain flow-level information
about each event (connection duration, port numbers, times-
tamp, and number of forward and backward bytes transmitted),
the source and destination IP addresses, and attack class
labels. IP addresses are necessary to generate the asset-level
graph features, so some publicly-available datasets with la-
beled malicious traffic, such as CICIDS-2018, were excluded.
Similarly, the attack labels must be sufficiently granular to
perform metric learning, so datasets with binary labels were
also excluded. In total, we used four publicly-available datasets
as well as two proprietary datasets, as summarized in Table I.

B. Feature Engineering

This works aims to augment the approach Redino et al. [15]
proposed with metric learning, and consequently utilizes the
same feature engineering approach for ZDT detection. Our
ZDT detector requires only connection-level information that
can be obtained from network flow logs. Using the connection
source and destination IP addresses, we construct an overall
graph of connections, where each connection between hosts
contributes edge weight 1. We then use this interaction graph
to compute 9 graph features to describe each host, with the
goal of abstracting the role that different types of hosts play
in their communities. For each event, then, we append to the
flow-level data these asset-level graph features for both the
source and destination IP addresses, as well as a flag which
detects when a connection crosses between communities in
the graph. Finally, the actual IP addresses are not included as
features to avoid overfitting to the training networks.

C. ZDT Model Architecture

Redino et al.’s [15] dual-autoencoder approach splits the
task of identifying ZDTs into anomaly detection and novelty
detection:

1) Anomaly Detector (AD): Trained on benign network
traffic and designed to identify any malicious activity
that effect the network flow. All events pass through the
AD at inference; events that exceed the loss threshold
are considered anomalous.

2) Novelty Detector (ND): Trained on known attack types
and designed to identify previously-unseen attack types.
Only events that have already been labeled anomalous
by the AD pass through the ND at inference, though in
practice this data will still contain some benign traffic.
The key addition of this work is to propose a novel
method for training the ND using metric learning to
improve performance and interpretability.

At inference, the data are normalized before being passed
through the AD. The anomalous data are then renormalized



Fig. 2: Novelty Detector Triplet Training Architecture

and pass through the ND, before being post-processsed and
presented to operators for evaluation. See Figure 1 for a visual
depiction of this workflow.

D. Normalization and Training

Training data for the AD consists of only benign network
traffic which is normalized using a simple min-max scaler.
Each dataset is scaled with independently to account for
differences in baseline behavior patterns between networks.
The detector then uses the Adam optimizer to minimize the
mean-squared error reconstruction loss.

In divergence from Redino et al. [15], the ND is trained
on only known malicious behavior, independently normalized
using a standard scaler followed by a Yeo-Johnson power
transformation [19]. The Novelty Detection loss function is
a weighted sum of the reconstruction loss and a second loss
function which implements metric learning on the latent vec-
tors. Although many metric learning approaches to organize
embeddings exist, we chose to use a triplet loss [20], given by

L(A,P,N) = max(‖fφ(A)− fφ(P )‖2

−‖fφ(A)− fφ(N)‖2 + α, 0)
(1)

where A is the anchor input, P is the positive input, N is
the negative input, α is the margin, and fφ is an embedding
function with trainable parameters. The goal for each triplet is
to maximize the interclass distance, between anchor and nega-
tive, while minimizing the intraclass distance, between anchor
and positive. A key step here is triplet mining, which creates
batches of triplets according to a desired degree of hardness.
Triplets with a larger distance between anchor and positive and
lower distance between anchor and negative are considered
harder, while the converse are considered easy. Convergence
in training requires forming appropriately difficult batches so

that the model can learn consistently and without too much
instability. We used a ’round-robin’ approach to create semi-
hard batches, which satisfies equation 2 where dist is the
Euclidean distance, which contain approximately the same
number of anchor examples for each pair of classes in order
to encourage class separation even between classes with low
support in training. Once a batch has been generated, the
reconstruction loss is computed only on the anchor examples,
and the triplet loss is calculated for the triplets after they have
passed through the encoder.

dist(A,P ) < dist(A,N) < dist(A,P ) + α (2)

The final weighted loss equation for training taking into
account the reconstruction loss M and triplet loss L is given
by equation 3 where β and γ are scalar weights to bring each
loss to approximately the same scale. Figure 2 depicts the final
training architecture for the ND.

Loss = βM+ γL (3)

IV. EXPERIMENTAL DESIGN

A. Performance Metrics and Baseline Modeling

Given the overwhelming bias toward benign events in real-
world cybersecurity datasets, our primary performance metrics
were precision, recall and the area under the curve (AUC)
for the receiver operator characteristic (ROC) curve. We col-
laborated with the industry professional threat hunt teams to
establish target values for these metrics that will allow the
models to be useful in practice. To prevent operator fatigue, we
aim first for high precision (0.90 or greater), and then attempt
to maximize recall (0.80 or greater) and AUC. As compared
to the performance of baseline modeling approaches such as
support vector machines (SVMs) or multiclass random forests,



Fig. 3: Novelty Detector Performance

(a) Reconstruction Loss Only

Attack Support AUC Precision Recall
rat 940k 0.84 0.69 0.45

infostealer 430k 0.94 0.56 0.29
command/control 20k 0.91 0.98 0.83

ransomware 100k 0.94 0.78 0.48
botnet 100k 0.95 1.00 0.91

interrogation 130k 0.91 0.91 0.92
worm 100k 0.97 0.83 0.53

downloader 65k 0.86 0.71 0.54
scanning 170k 0.86 0.94 0.91
Average - 0.91 0.82 0.65

(b) Reconstruction Loss and Metric Learning

Attack Support AUC Precision Recall
rat 940k 0.88 0.73 0.54

infostealer 430k 0.95 0.60 0.39
command/control 20k 0.91 0.99 0.84

ransomware 100k 0.87 0.80 0.56
botnet 100k 0.96 1.0 0.94

interrogation 130k 0.91 0.90 0.94
worm 100k 0.93 0.88 0.63

downloader 65k 0.86 0.77 0.61
scanning 170k 0.93 0.94 0.92
Average - 0.91 0.85 0.71

the two-model architecture with graph features [15] showed a
significant improvement, with the AD performing with AUC
above 0.99, especially when when evaluated on classes with
low support or on novel network topologies. However, the
performance of the ND lagged behind in these scenarios, strug-
gling to identify novelty or conversely familiarity in attack
types it had learned before if the number of training examples
was low. Thus, the primary focus of these experiments was on
the ND, though the AD is still necessary to generate end-to-
end results.

B. Anomaly Detector

The AD was trained and evaluated using benign examples
from OIF, MAWI, NCCDC, ISOT, and ISCX datasets and the
training methodology aimed to minimize only a Mean Squared
Error (MSE) loss without metric learning, primarily due to the
fact that only a single class existed during training.

C. Novelty Detector

The overall classification power of the ND is measured by
holding out a specific attack class during training, and then
treating that class as a ZDT at prediction time. To quantify
the change produced by metric learning, we treated each attack
class separately as a ZDT and evaluated performance on the
model trained with and without metric learning. Though not
an explicit goal of this modeling effort, we are also interested
in how well the encoder is able to separate different attack
classes in the latent space. To that end, we used visualizations
of the latent space and a k-nearest neighbors (kNN) classifier
to identify whether one training methodology produced more
distinct clusters than the other.

V. IMPLEMENTATION AND RESULTS

A. Anomaly Detector

Our results closely match Redino et al. [15], with precision,
recall, and AUC above 0.99 for validation sets as well as
completely held-out network datasets.

B. Novelty Detector
The ND trained with the Codex, ISOT, and ISCX data, but

without metric learning, also showed little change from [15].
The version trained with metric learning, however, showed
considerable improvement in precision and recall, particularly
for classes with low support which had performed poorly in
the previous model. Performance on each class as well as
an overall average can be found in Table 3. In each case, in
order to account for the rarity of ZDTs in real-world networks,
the evaluation dataset contained less than 2% events from the
held-out class, and this class imbalance produces an apparent
discrepancy between the measured AUC and precision-recall.
We also held out the entire Codex dataset during training and
were able to achieve similarly high performance at evalua-
tion, demonstrating the model’s ability to generalize between
networks.

To visualize the latent spaces produced by these two training
methodologies, we used a Uniform Manifold Approximation
and Projection (UMAP) embedding to reduce the dimension
of the space from 5 to 3 [21]. This necessarily destroys some
information from the raw latent space, but it provides a more
digestible visualization than simply projecting the space into
every combination of 5 dimensions. A characteristic example
of the difference between the two models, where the same
attack class has been held out as a ZDT, can be seen in Figure
4. The model trained with metric learning shows significant
organization of the known attack classes into clusters, while
the held-out class, botnet, is more diffuse. The model trained
with only reconstruction loss, by contrast, has a chaotic latent
space with no clear clusters of any kind.

In order to test whether this clustering effect occurred in the
raw, 5-dimensional latent space, we trained the model with all
available attack classes, then fit a kNN to the embeddings
and attempted to classify test examples of the known attack
classes. Figure 5a shows the classification accuracies for both
versions of the model over a range of k values. For small
k, both models performed well, with average accuracies of
0.88 and 0.93 for the models trained without and with metric
learning, respectively. As the value of k increased, though,



Fig. 4: Characteristic UMAP representations of the latent space for the model trained with only reconstruction loss (left) and
the model trained with metric learning (right). Botnet attacks were treated as ZDTs and held out during training. Note that we
only included the four attack classes found in NCCDC to allow for easier viewing.

the performance of the model trained with only reconstruction
loss degraded much more rapidly than the metric loss model,
demonstrating the more robust clustering produced by the
triplet loss.

C. End-to-End Performance

Because of the high performance of the AD, the overall
performance of the dual-autoencoder approach is almost iden-
tical to that of the ND. For the version of the model where
the ND was trained without metric learning, the precision and
recall were 0.82 and 0.64, respectively. Meanwhile, for the
version where the ND is trained with metric learning, the
precision and recall were 0.85 and 0.71, respectively, showing
a clear improvement over the previous version. While the
improvement in performance may be modest compared to
the datasets used for evaluation here, we believe that this
will provide a drastic improvement in end-user usability in
enterprise environments where the number of events processed
by the models would be several orders of magnitude larger.
Furthermore, given the rapidly increasing number of ZDTs
seen in industry year-over-year [1], a 7% improvement in
recall could enable organizations to identify potentially se-
vere ZDTs that would have never been flagged by previous
methods.

VI. CLOSEST ATTACK TYPE ATTRIBUTION (CATA)

While utilizing metric learning lends itself to performance
improvements when identifying ZDTs, the class separation
in the ND’s latent space also allows us to improve model
interpretability from an end-user perspective. Particularly, we
can utilize a k-nearest neighbors classification in the ND’s

latent space to identify the closest attack type to a ZDT
example during inference using the algorithm given below.

Algorithm 1 Closest Attack Type Attribution

Require: K, the kNN model fit to the ND while training
1: for Example e in batch do
2: c = latent space representation for e . Pass example

through encoder
3: p = K(c) . Compute closest attack type for e using

kNN with probability
4: end for

The output of the CATA algorithm would be a per-example
attribution of the closest attack class the ND had learnt to
encode during training as seen in Figure 5b for some hold-
out examples. We believe that generating such classification
probabilities of related attack types provides deeper insight
into model interpretability and evaluation in two distinct ways.
Firstly, we can evaluate the stability and efficacy of model
training by measuring the accuracy of kNN classification with
varying values of k. Secondly, we can test the ND’s ‘con-
ceptual ’ understanding of cyber attack types by holding out
certain classes during training and evaluating the CATA output
for those holdouts to measure the classification probability for
training classes relative to it. Ideally, learned classes that are
similar to the holdout will have higher CATA probabilities
as compared to dissimilar classes. Naturally, the fidelity of
the CATA algorithm would be determined by the diversity
of classes seen during training time but the strong kNN
classification accuracy observed during experimentation even
with large k provides a promising indication of reliably stable



Fig. 5: Results for multiclass classification of known and holdout attacks using latent space representations and kNN.

(a) kNN classification performance for both versions of the
ND at different values of k.

Holdout CAT Probability
scanning interrogation 0.34

botnet command/control 0.32
command/control downloader 0.29

infostealer downloader 0.28

(b) Closest attack type attribution for various holdout ex-
amples. The probability is based on the number of nearest
neighbors for the chosen attack class compared to all others.

results during inference.
Furthermore, from a threat hunt perspective, this meta-

data should allow for faster investigation of novel threats
by providing crucial context related to expected behavior of
malware, possibly leading to fruitful avenues of exploration;
ultimately to help reduce the mean time to triage and respond
in SOC organizations. CATA probabilities could also help SOC
operators quickly triage false positives our models produce in
production by validating if the flagged ZDT is, in reality, the
closest CATA attack.

VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

The introduction of metric learning to the ND presented here
offers a modest but noticeable improvement over the previous
version trained with only reconstruction loss. It is important
to note here that while triplet loss based metric learning only
provides a few percentage points of improvement in precision
and recall, the framework introduced in this work can be used
to implement other metric learning methods as well. Our team
has also specifically experimented with softmax-based metric
learning methods and have observed precision values ranging
from 0.72 to 0.97 and recall from 0.58 to 0.97, which is a
drastic improvement to the triplet loss method.

While the increase in overall precision and recall is im-
portant to avoid operator fatigue, perhaps equally valuable is
the ability to better interpret individual model outputs. Threat
hunters tasked with validating ZDT detections from our model
are able to see whether the event was similar to a known
attack class based on the output of kNN in the latent space;
more nearest neighbors from a particular class corresponds
to a higher “probability” that the supposed zero-day event
was actually an attack of that known class. This offers threat
hunters some indication of why the model made its prediction,
and by giving a starting point for investigation it has the
potential to significantly reduce the time required to make a
decision.

While we made every effort to use a variety of attack types,
the field of known attacks is more diverse than the labeled data
available to us. Thus, in practice many attacks would be falsely

labeled as ZDTs simply because they were unknown to the
network in training. We expect the frequency of false positives
to decrease as operators label the output data and it is used
to retrain the model with new attack types. Furthermore, we
believe that continued research in cyber terrain mapping and
annotation could greatly alleviate this problem by providing
our models contextual labels of cyber threats based on the risk
an individual asset in the flow poses to the network as a whole.

Another potential issue here is a specific form of overfitting
where the latent space collapses into a smaller dimension,
destroying necessary information for the decoder. This hap-
pened occasionally during training with the triplet loss and it
was vital to check for it. Other loss functions are available
for implementing metric learning, such as the softmax-based
function mentioned above, and have so far avoided this over-
fitting problem. Future work will include continued testing of
other loss functions, development of federated learning, and
development of metric based few shot learning techniques that
allow our models to learn across environments with limited
labelled attack examples while maintaining data privacy.

Future work will also aim to benchmark our models’ perfor-
mance compared to previously introduced approaches on the
same datasets we used for training in order to achieve a more
in-depth comparison of results. Particularly, we believe that
the works introduced by Hindy et al. [11], Yousefi-azar et al.
[12], and An and Cho [13] would be feasible to implement and
benchmark against given the data sources the authors used in
their studies as well as similar themes in terms of a modeling
approach.

REFERENCES

[1] J. Dunsavage, “Latest research and analysis,” Apr
2022. [Online]. Available: https://www.iii.org/insuranceindustryblog/
cyberattacks-growingin-frequency-severity-and-complexity/

[2] C. Edwardson, “Sonicwall threat intelligence confirms alarming surge
in ransomware, malicious cyberattacks as threats double in 2021,” Feb
2022.

[3] M. Stone, “The more you know, the more you know you don’t know,”
Jan 1970. [Online]. Available: https://googleprojectzero.blogspot.com/
2022/04/the-more-you-know-more-you-know-you.html

https://www.iii.org/insuranceindustryblog/cyberattacks-growingin-frequency-severity-and-complexity/
https://www.iii.org/insuranceindustryblog/cyberattacks-growingin-frequency-severity-and-complexity/
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-more-you-know-you.html


[4] I. R. L. University of Victoria, “Isot dataset overview,” 2010. [Online].
Available: https://www.uvic.ca/ecs/ece/isot/assets/docs/isot-datase.pdf

[5] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection,” Computers I& Security, vol. 31, no. 3,
pp. 357–374, 2012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167404811001672

[6] M. Zolotukhin and T. Hämäläinen, “Detection of zero-day malware
based on the analysis of opcode sequences,” in 2014 IEEE 11th
Consumer Communications and Networking Conference (CCNC), 2014,
pp. 386–391.

[7] X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Using bayesian
networks for probabilistic identification of zero-day attack paths,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 10, pp.
2506–2521, 2018.

[8] A. G. P. Lobato, M. A. Lopez, I. J. Sanz, A. A. Cardenas, O. C.
M. B. Duarte, and G. Pujolle, “An adaptive real-time architecture for
zero-day threat detection,” in 2018 IEEE International Conference on
Communications (ICC), 2018, pp. 1–6.

[9] A. Blaise, M. Bouet, V. Conan, and S. Secci, “Detection of zero-day
attacks: An unsupervised port-based approach,” Jul 2020. [Online].
Available: https://hal.archives-ouvertes.fr/hal-02889708

[10] M. Sarhan, S. Layeghy, M. Gallagher, and M. Portmann, “From zero-
shot machine learning to zero-day attack detection,” 09 2021.

[11] H. Hindy, R. Atkinson, C. Tachtatzis, J.-N. Colin, E. Bayne, and
X. Bellekens, “Utilising deep learning techniques for effective zero-day
attack detection,” Electronics, vol. 9, p. 1684, 10 2020.

[12] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
“Autoencoder-based feature learning for cyber security applications,” in
2017 International Joint Conference on Neural Networks (IJCNN), 2017,
pp. 3854–3861.

[13] J. An and S. Cho, “Variational autoencoder based anomaly detection
using reconstruction probability,” 2015.

[14] Z. Zhang, Q. Liu, S. Qiu, S. Zhou, and C. Zhang, “Unknown attack
detection based on zero-shot learning,” IEEE Access, vol. 8, pp. 193 981–
193 991, 2020.

[15] C. Redino, D. Nandakumar, R. Schiller, K. Choi, A. Rahman, E. Bowen,
M. Weeks, A. Shaha, and J. Nehila, “Zero day threat detection using
graph and flow based security telemetry,” 2022. [Online]. Available:
https://arxiv.org/abs/2205.02298

[16] H. Qu, J. Zhou, and J. Qin, “Metric learning with neural
network for modbus/tcp anomaly detection,” in Proceedings of the
2nd International Conference on Industrial Control Network And
System Engineering Research. New York, NY, USA: Association
for Computing Machinery, 2020, p. 63–69. [Online]. Available:
https://doi.org/10.1145/3411016.3411160

[17] G. Andresini, A. Appice, and D. Malerba, “Autoencoder-based
deep metric learning for network intrusion detection,” Information
Sciences, vol. 569, pp. 706–727, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S002002552100462X

[18] W. Wang, S. Jian, Y. Tan, Q. Wu, and C. Huang, “Representation
learning-based network intrusion detection system by capturing explicit
and implicit feature interactions,” Comput. Secur., vol. 112, no. C, jan
2022. [Online]. Available: https://doi.org/10.1016/j.cose.2021.102537

[19] I.-K. Yeo and R. A. Johnson, “A new family of power transformations
to improve normality or symmetry,” Biometrika, vol. 87, no. 4, pp.
954–959, 2000. [Online]. Available: http://www.jstor.org/stable/2673623

[20] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,”
in Similarity-Based Pattern Recognition, A. Feragen, M. Pelillo, and
M. Loog, Eds. Cham: Springer International Publishing, 2015, pp.
84–92.

[21] L. McInnes, J. Healy, N. Saul, and L. Großberger, “Umap:
Uniform manifold approximation and projection,” Journal of Open
Source Software, vol. 3, no. 29, p. 861, 2018. [Online]. Available:
https://doi.org/10.21105/joss.00861

https://www.uvic.ca/ecs/ece/isot/assets/docs/isot-datase.pdf
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://www.sciencedirect.com/science/article/pii/S0167404811001672
https://hal.archives-ouvertes.fr/hal-02889708
https://arxiv.org/abs/2205.02298
https://doi.org/10.1145/3411016.3411160
https://www.sciencedirect.com/science/article/pii/S002002552100462X
https://www.sciencedirect.com/science/article/pii/S002002552100462X
https://doi.org/10.1016/j.cose.2021.102537
http://www.jstor.org/stable/2673623
https://doi.org/10.21105/joss.00861

	I Introduction
	II Literature Review
	III Methodology
	III-A Datasets
	III-B Feature Engineering
	III-C ZDT Model Architecture
	III-D Normalization and Training

	IV Experimental Design
	IV-A Performance Metrics and Baseline Modeling
	IV-B Anomaly Detector
	IV-C Novelty Detector

	V Implementation and Results
	V-A Anomaly Detector
	V-B Novelty Detector
	V-C End-to-End Performance

	VI Closest Attack Type Attribution (CATA)
	VII Conclusion, Limitations, and Future Work
	References

