
Monitor **Deloitte**.

Carbon Capture Usage and Storage

State of the market in 2022

Introduction

There have been several conversations and questions surrounding the topic of Carbon Capture Usage & Storage (CCUS). Many of them are skeptical about the viability of CCUS, thereby generating doubts across different industries regarding the role of CCUS in addressing the enormous challenge of carbon emissions reduction. The common arguments are that: prevailing technologies are expensive and/or do not work optimally; taxpayers should not fund unproven technologies with dubious results; investments in renewables are preferable to CCUS; such a technology protects the status quo of hydrocarbon producers; and so on.

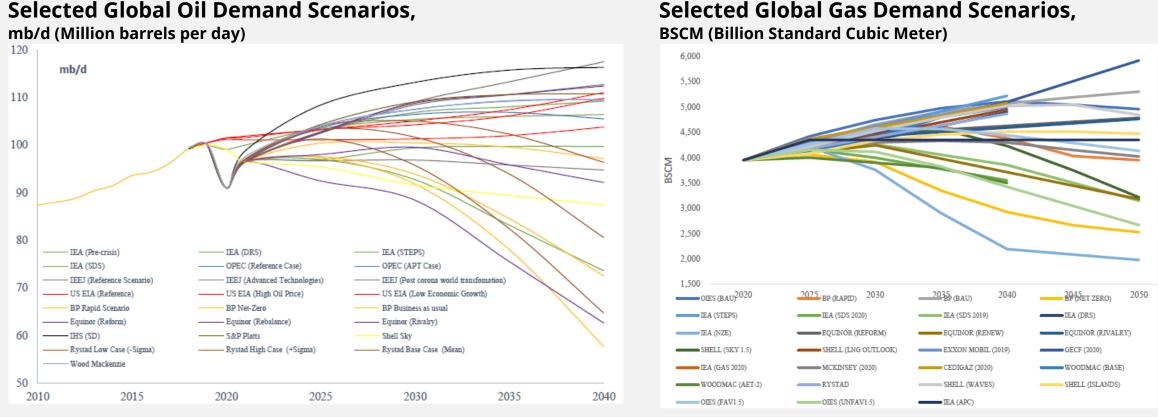
This paper's intent is not just to objectively explore this skepticism, but also to understand the actual market situation of CCUS in 2022, in order to provide answers to concerned industries and governments. These answers pertain to the potential of CCUS as part of our arsenal of carbon offset solutions; to the validation of governments' support of CCUS developments; and to the eventual long-term viability of the CCUS technology and business model.

Our study concludes that CCUS can be instrumental in compensating residual CO₂ emissions that are hard to abate in Energy-Intensive Industries,

Power Generation and Refined Hydrocarbons. Furthermore, based on all types of CCUS projects in 2022, we believe that we are off to a running start.

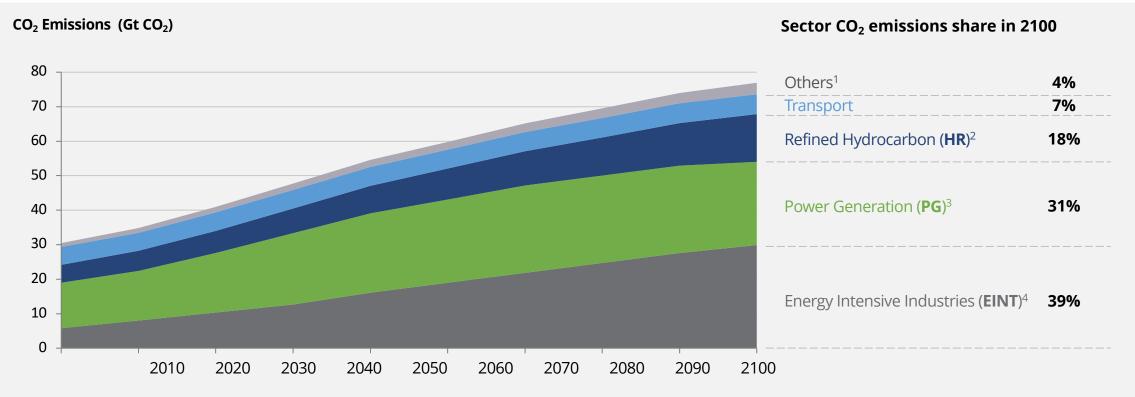
Recently, revisions in governments' policies are enabling more-effective Public-Private Partnerships, which provides strong potential for CCUS industry to gain momentum, while ensuring investment stability. We increasingly observe public signals of confidence and collaboration from industry leaders, governments and investors with regards to CCUS - which we believe will gradually drive public acceptance of this technology.

We are still on the path of cost reduction, but we expect to observe further technology innovations, positive effects of a projects' scale up and efficiencies, as well as the entrance of tier-1 players into this landscape. As CCUS expands in hubs to leverage CO₂ emission clusters and combined expertise, we propose Public-Private Partnerships to focus on mega clusters as a solution to bridge the 0,6Gt CO₂ gap in carbon capture capacity by 2030.



01	Context
02	CCUS and its outlook
03	Lessons learned
04	Reduce technical and financial costs
05	Revise regulatory and political support
06	Expand access to market
07	Conclusions
08	Deloitte and CCUS

01 Context


Even in the most aggressive scenarios, hydrocarbon demand will remain part of the energy mix

Source: Oxford Institute For Energies Studies (2021)

OI CONTEXT Oil and gas, coupled with coal demand, may eventually generate ~50Gt of CO₂ emissions per year in 2050

Expected world CO₂ emissions by sector without climate action policy

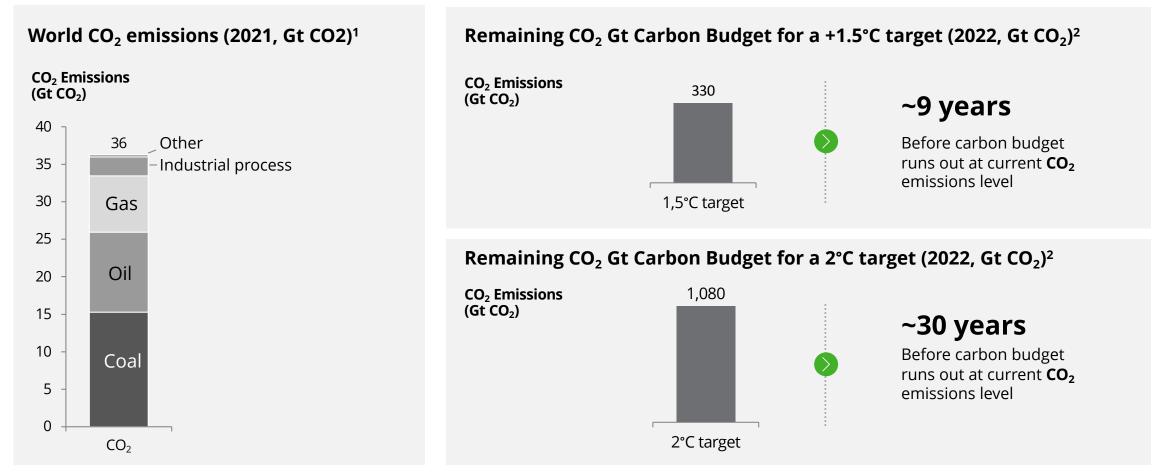


1) Includes Service and Food; 2) Includes Petrochemicals, Refining, Coal-to-liquid (CTL), Gas-to-liquid (GTL), Liquefied Natural Gas (LNG); 3) Includes Coal-fired plant, Natural Gas-fired plant, Waste-to-energy, Biomass; 4) includes Iron & Steel, Cement, Chemicals and O&G energy intensive extractions

Source: MIT – Farrell et all. (2018); Monitor Deloitte Analysis based on updated research

01 CONTEXT This may drive the planet into a +3.7°C warming trajectory unless we intervene with a sustainable development plan

Net global CO₂ emissions (2000-2100, Gt CO₂)¹... and the consequent 2100 Warming

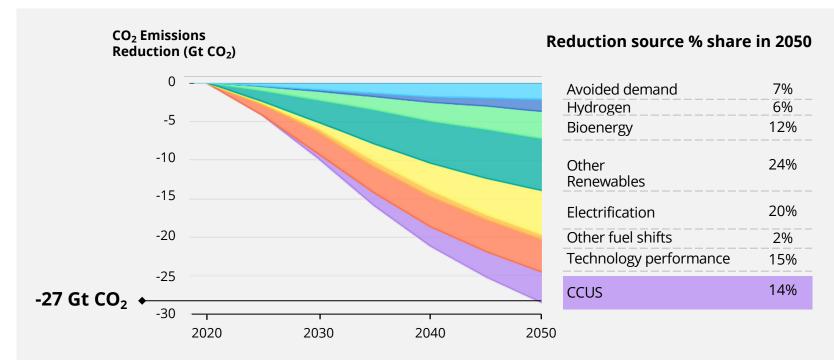

1) IPCC CO2 emissions calculation include CO2 -FFI (CO2 from fossil fuel combustion and industrial processes) and CO2 -LULUCF (CO2 from land use and land-use change and forestry)

Source: IPCC (2022), IEA, Monitor Deloitte Analysis

© 2022 Monitor Deloitte. A Deloitte network entity

7

OT CONTEXT **At current emission (36 Gt CO₂/y), we should reach +1.5°C in 9 years – It seems more realistic aiming the +2°C scenario, though remains an enormous challenge**



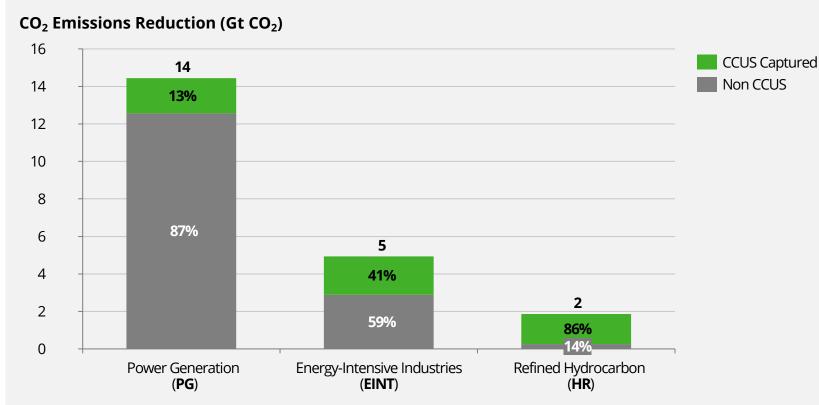
1) IEA CO_2 emissions calculation only include CO_2 from fossil fuel combustion and industrial processes; 2) Remaining CO_2 budget for >67% likelihood of achieving 1,5°C (respectively 2°) from start of 2020 was 400Gt CO_2 (1,150 Gt CO_2). Cumulative emissions over CO_2 Emissions over 2020-21 are ~70Gt CO_2 **Source:** IEA (2021), IPCC (2022), Monitor Deloitte Analysis based on updated research

© 2022 Monitor Deloitte. A Deloitte network entity

OT CONTEXT We have multiple solutions to tackle this challenge, including CCUS, which scientists have stated could account for ~15% of expected CO₂ reductions

IEA Sustainable Development Scenario (SDS) CO₂ emissions reductions by source by 2050¹

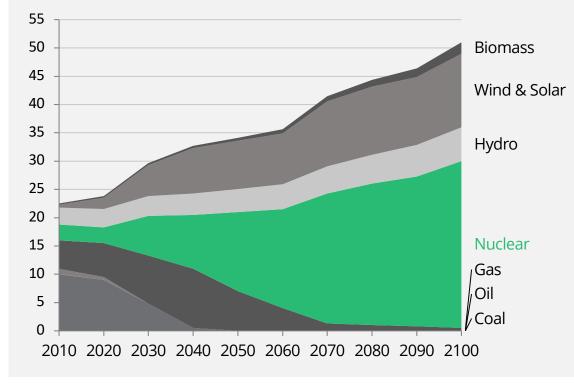
- CCUS is not a magic bullet, yet neither is any of the available technologies
- As per the CO₂ abatement solutions, we could see an order of priority, however given the amplitude of the challenge all solutions require similar consideration
- In a hypothetical prioritization, CCUS could be used as a last resort to compensate for residual emissions that are hard to abate


 Include Stated Policies Scenario CO₂ reductions (i.e., government policies and commitments that have already been adopted or announced with respect to energy and the environment, including commitments made in the nationally determined contributions under the Paris Agreement)
 Source: IEA (2020), Monitor Deloitte Analysis

02 CCUS and its outlook

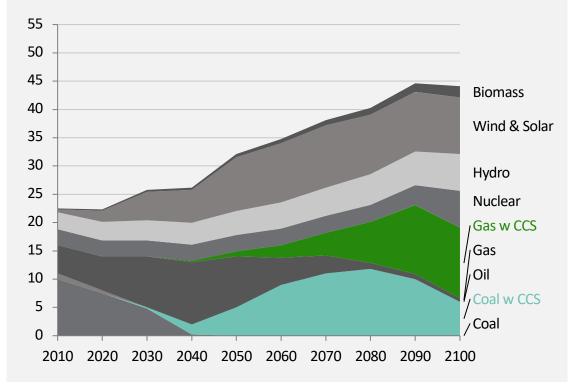
CCUS and its outlook CCUS is instrumental in compensating residual emissions that are hard to abate in Energy-Intensive Industries, Power Generation and Refined Hydrocarbons

CCUS Contribution to relevant sector CO₂ emissions reductions in 2050 to achieve SDS¹

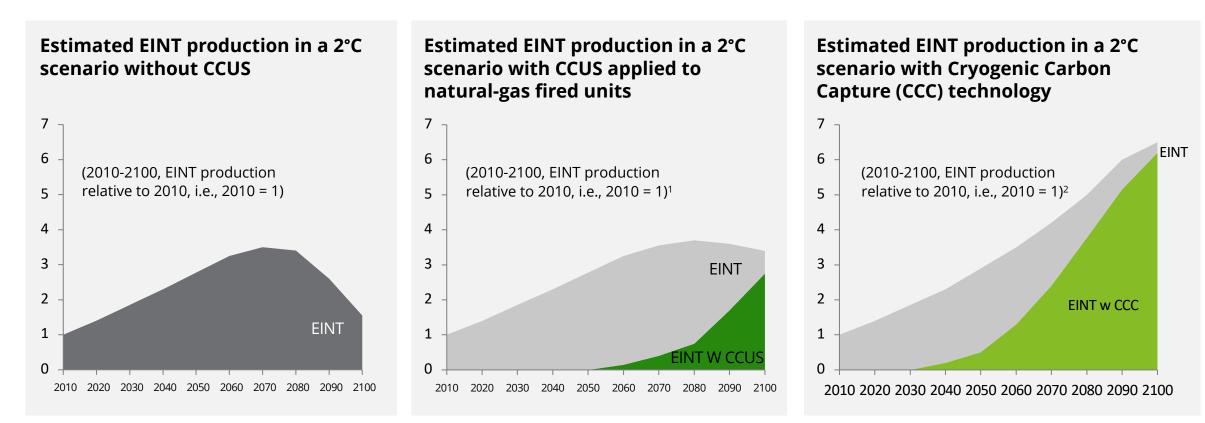


1) Exclude CO₂ emissions reductions from other sectors including Transport and Others and exclude CO₂ emissions reductions from Stated Policies Scenario **Source:** IEA (2020), Monitor Deloitte analysis

- In a sustainable development scenario, EINT, PG and HR will contribute to the reduction of ~21 Gt CO₂ in 2050
- Out of the 21 Gt CO₂ reduction, CCUS technology would be responsible for abating 5,6 Gt CO₂ in 2050
- In Refined Hydrocarbons, CCUS would account for most of the emission reduction (86%; 1,6 Gt CO₂)
- CCUS would account for roughly half in Energy-intensive Industries (41%; 2 Gt CO₂)
- A lower share of emission reduction in Power Generation would stem from CCUS (13%; 1,9 Gt CO₂)


O2 CCUS and its outlook In the absence of a "more-efficient nuclear scenario" in power generation, CCUS will decarbonize the residual electrons in Gas and Coal fire-based power plants

Power Generation mix in a 2°C scenario with a "more-efficient nuclear scenario" (2010-2100, Twh)

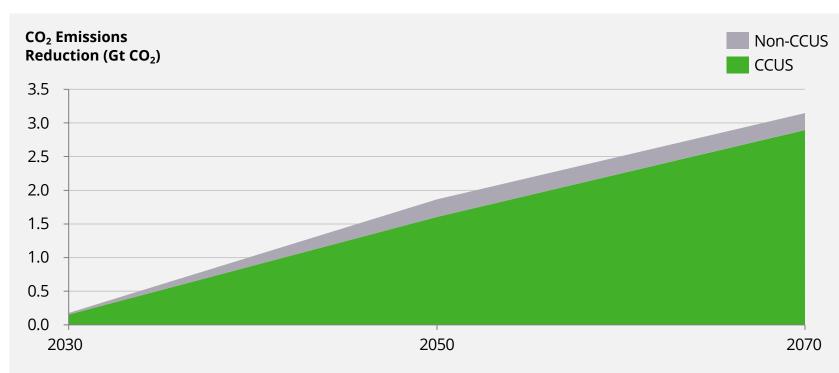


Note: Backup for non-dispatchable renewables at 100% **Source:** MIT – Farrell et all. (2019); Monitor Deloitte Analysis

Power Generation mix in a 2°C scenario with CCUS contribution (2010-2100, Twh)

OZ CCUS and its outlook CCUS' role in EINT* is dual: allowing production's decarbonation and its increase. This facilitates a socio-economic transition - increasing # of jobs in these industries

1) Similar EINT production and CCUS contribution is obtained if CCUS is applied to coal-power fired units;

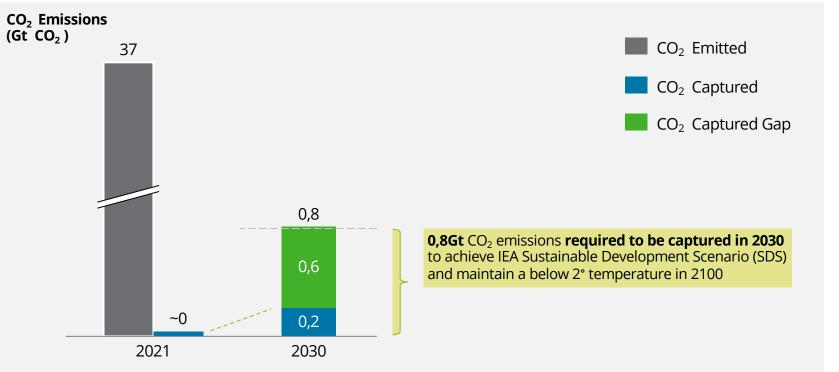

2) CCC is a highly innovative technology with high potential but still at development stage;

(*) energy intensive industries

Source: MIT – Farrell et all. (2018); Monitor Deloitte Analysis

OZ CCUS and its outlook **In Refined Hydrocarbons, CCUS would almost entirely decarbonize operations**

CCUS contribution to relevant sector CO₂ emissions reductions in 2050 to achieve SDS¹



Note: Includes Petrochemicals, Refining, Coal-to-liquid (CTL), Gas-to-liquid (GTL), Liquefied Natural Gas (LNG) **Source:** IEA (2020), Monitor Deloitte analysis

- This decarbonization activity is notably in the hands of Oil & Gas and Petrochemical Companies, both National and International
- It refers to typical Scope 1 emissions
- These emissions specifically refer to :
 - Stationary combustion (e.g., fuels, heating sources)
 - Process emissions that are released during industrial processes (e.g., refining hydrocracking/steam reformer, crude/vacuum heaters, etc.)
- The reporting of these emissions is mandatory for companies

⁰² CCUS and its outlook Where do we stand? Pipelined CCUS capacity in 2030 is lagging with 0,2 Gt CO₂ expected to be captured by 2030 against the planned 0,8Gt CO₂

CCUS Facilities Capture Capacity Gap to achieve IEA Sustainable Development Scenario

Source: IEA (2021), GCCSI, Monitor Deloitte Analysis

- CCUS is still a niche in the pursuit of net zero
- The power generation industry achieved minor gains after ~US\$10B of investment testing CCUS technology & commerciality
- Yet, it will need to work because it's the only hope of addressing hard-to-abate emissions

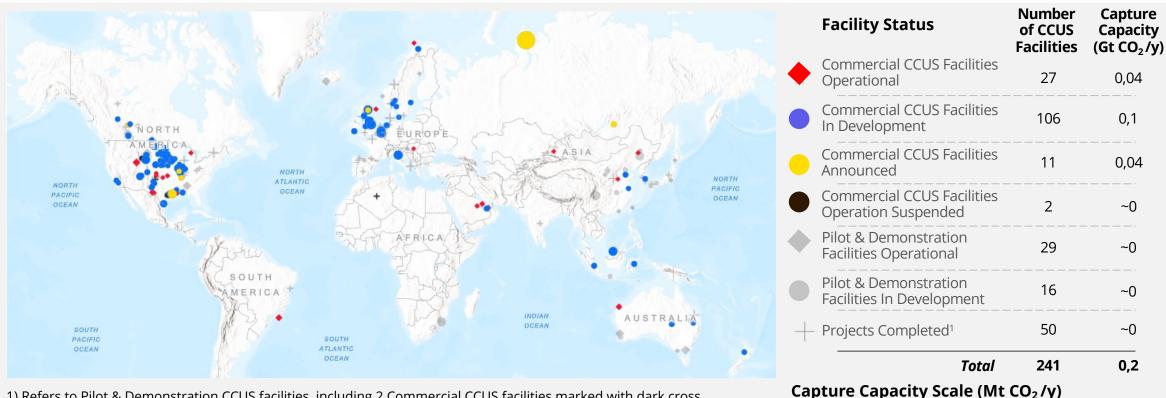
OZ CCUS and its outlook The overall picture of all types of CCUS projects in 2022 shows that we are off to a running start

Overview of the historical development of CCUS facilities

Total Cumulative Capture Total Cumulative Number of CCUS Facilities¹ Capacity (Gt $CO_2 / y)^2$ Total Cumulative CCS Facilities Capture Capacity Gt CO₂/y 0,3 200 **CCUS Facilities In Development** 150 **CCUS Facilities Operational** 0,2 CCUS Facilities Cancelled 100 0,1 50 0,0 0 -50 -100 -150 -200 1972 2005 2020 2030f 1975 1980 1985 1990 1995 2000 2010 2015 2025f

1) All types of CCUS Facilities including Pilot, Demonstration and Commercial; 2) Commercial CCUS Facilities only **Note:** "In Development" refers to CCUS projects status including Announced, Early Development, Advanced Development and In Construction **Source:** IEA (2021), GCCSI, Monitor Deloitte Analysis A new, large industry must be built almost from scratch, but there are reasons to be optimistic about CCUS' prospects:

- There was a flood of new CCUS projects over the past few years
- New CCUS projects are scaling up after successful deployment of the pilot/demo
- The high setup costs are gradually declining
- Policies are evolving rapidly to reinforce future CCUS investments


03 Lessons learned

.....

10000

⁰³ Lessons learned While analyzing all 241 CCUS projects, we learned that CCUS would need three avenues of improvements to offset the <u>No Business Value</u> of CO₂ abatement...

Overview of world CCUS facilities, by Development Stage and Capture Capacity

1) Refers to Pilot & Demonstration CCUS facilities, including 2 Commercial CCUS facilities marked with dark cross **Source:** ArcGIS Online Open Library, Monitor Deloitte Analysis

Carbon Capture Usage and Storage - State of the market in 2022 18

 \mathbf{O}_{15}

O 8 **O** < 0

03 Lessons learned

...(A) further decrease of cost through technology & financing, (B) enhance regulatory and political support and (C) expand access to markets

Α

Reduce technical and financial cost

- We are learning by doing -- Early projects for coal power based CCUS had a capture cost between 60-120USD/t. Learnings have led to a 25-35% reduction in costs (e.g., Boundary Dam vs Petra Nova) and new tech appear to be improving on that trend with predictions of 30-35% reduction/t
- CCUS is capital intensive. The lower the CO₂ emissions, the higher the CAPEX required to capture CO₂ and the less the achievable economies of scale. We are moving from a demo/pilot phase into a scaled commercial one and we believe that there will be **important** financial savings via restructuring of projects' cost of capital and access to multiple financing components
- 3. APAC region reports fewer projects terminated or cancelled as they are learning from the US/EU demos and mistakes. Australia, China, and Japan lead the **APAC CCUS development and are catching up with # of operational and indevelopment projects** but have fewer completed projects so far

B

Enhance regulatory and political support

- 1. Regulatory drivers are critical to creating markets for CCUS and there are different mechanisms across the world (EU ETS carbon price, US 45Q tax credit, Canada GGPPA, China National ETS...) however, only recent revisions in few countries seem to have found the mechanism of **incentives & penalties to allow CCUS to gain momentum**
- 2. Policies that qualify CCUS for **access to electricity markets** would be beneficial. Two of the three successful CCUS demonstrations on power plants (Boundary Dam and Kemper) did access electricity markets by gaining approval of their utility regulators to put some or all the costs in the rate base
- Unlike renewables, CCUS does not have a strong support base that can sway political support. There are several examples of how this has adversely impacted CCUS projects. Going forward, politics will play an important role in the adoption of CCUS. To gain **political** support, it is important to define the role of CCUS as complementary to renewables and not in competition

С

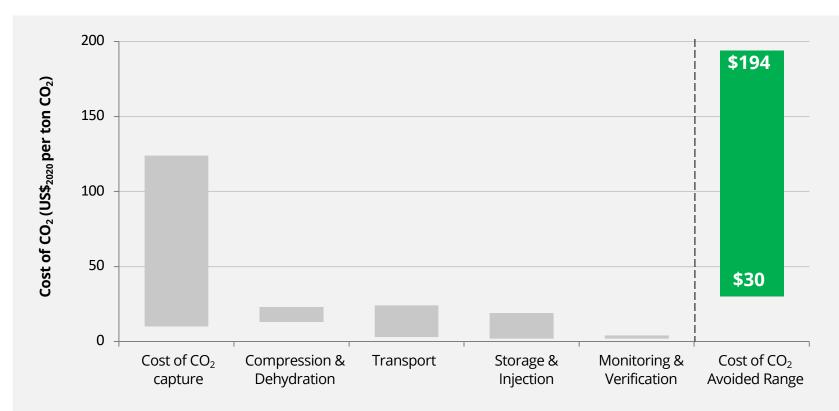
Expand access to markets

- 1. CCUS' projects are expanding in **regional clusters**, where multiple companies collaborate for a regional common business and social driver: abating regional CO₂ . **Public/Private Partnerships** are forming where Governments incentive industry emitters to capture the CO₂, which is transported and stored by major O&G players
- 2. Oil and gas **EOR market** has mainly driven the few successful CCUS commercial applications. There is a need to target industries with a nearby relevant EOR market for decarbonization via CCUS. E.g., we expect a rapid ramp up in the GCC region where the relevant EOR market may replace gas with CO₂
- 3. As the **hydrogen market** expands, new Green Hydrogen facilities will have to be coupled with **existing and new blue/grey hydrogen facilities with CCUS**
- 4. Innovative **CCUS poly-generation (PG)** projects are complex, but they are potential pathways to explore new markets. Few successful CCUS applications are classified as PG projects that are based on coal gasification technology but produce sellable additional products in addition to electricity and CO₂

04 Reduce technical and financial costs

Reduce technical and financial costs CCUS <u>amine-based</u> capture technology is the most used across all applications – we expect to report cost reductions through gathered knowledge & experience

Mapping of CO₂ capture type and technologies across Commercial and Pilot CCUS project (2021)

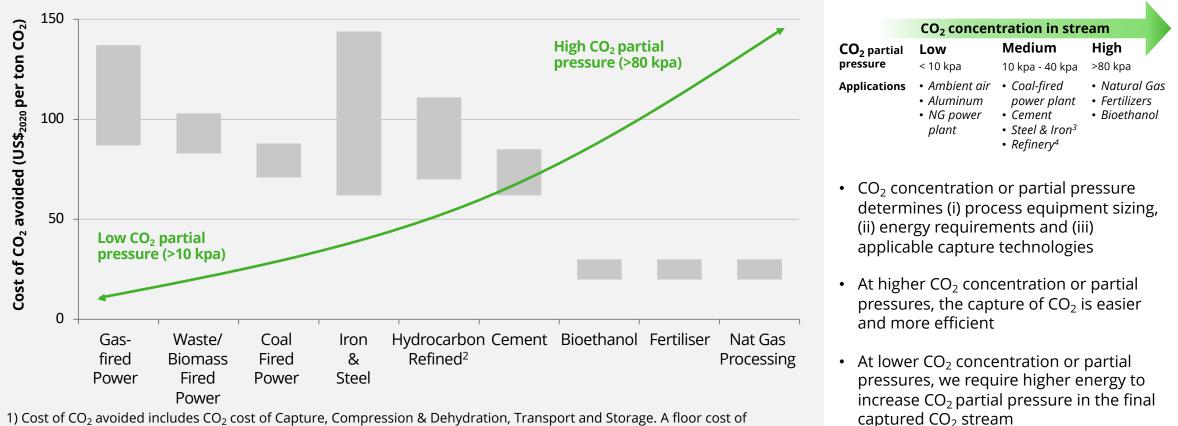

Industry	Application	CO ₂ Capture Pathway and Separation Technologies					
		Industrial Separation	Post-combustion	Pre-combustion	Oxy-fuel combustion	Inherent Separation	
	Coal Power	Chemical Absorption (CAP)	(CAwA), Membrane, Solid Looping (CaL)	Chemical Absorption (Amine)	-		
	Natural Gas Power	Chemical Absorption w/Amine (CAwA)	Chemical Absorption (CAP), Physical Absorption	Physical Absorption (Selexol)	Sour Gas	Allam-Fetvedt Cycle	
Power	Waste to energy		Chemical Absorption (Amine)		Cryogenic (CCC)		
Generation	Bioenergy	Under evaluation					
	Cement Production	(CAwA), Membrane, Solid Looping					
	Chemical Production	(CAwA), Physical Absorption (Rectisol)	Chemical Absorption (CRDMax®)				
	Fertilizer Production	(CAwA), Physical Absorption (Selexol), Compression & Dehydratation					
Energy Intensive Industry	Iron & Steel Production	(CAwA), Physical Absorption					
	Natural Gas Processing	(CAwA), Physical Absorption (Selexol, PC), Membrane		Chemical Absorption (Amine)		Allam-Fetvedt Cycle	
	Ethanol Production	Compression & Dehydration, Fermentation					
	Hydrogen Production	(CAwA), Physical Absorption, Physical Adsorption			Clean Energy System		
	Methanol Production	Chemical Absorption (AEA)					
Refined	Refining - Petrochemical		Physical Absorption (VeloxoTherm™)				
	GTL / CTL	Physical Absorption (Rectisol)					
	LNG						

Source: GCCSI, Monitor Deloitte Analysis

© 2022 Monitor Deloitte. A Deloitte network entity

Reduce technical and financial costs CO₂ avoided cost per ton ranges from ~US\$30 to US\$200 across all CCUS applications

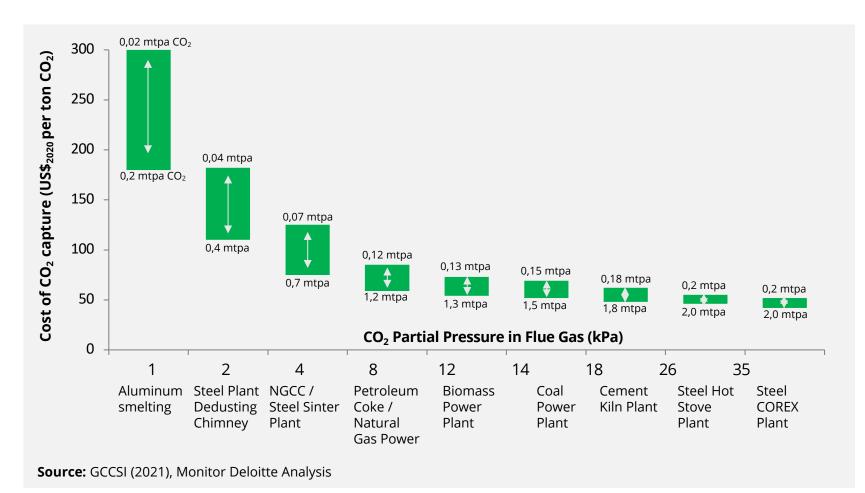
Cost of CO₂ across its value chain (2021)


Note: Excluding sectors with high CO₂ pressure (i.e., natural gas processing, bioethanol and fertilizer), Cost of CO₂ range is between US\$62-US\$194 **Source:** GCCSI (2021), Monitor Deloitte Analysis

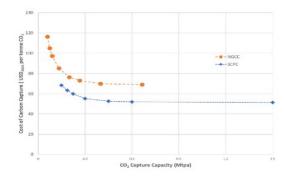
- CO₂ capture costs are 70% of the CO₂ cost avoided
- The remaining 30% of CCUS costs are for compression, dehydration, transportation, storage and monitoring

Reduce technical and financial costs CO₂ avoided costs differs by applications but are also inversely correlated with emitted CO₂ concentration

Cost of CO₂ avoided per industry (2021)¹



1) Cost of CO₂ avoided includes CO₂ cost of Capture, Compression & Dehydration, Transport and Storage. A floor cost of US\$20 is assumed for cost of Compression & Dehydration and Transport and Storage ; 2) Excluding Ethylene Oxide Production cost of CO₂ avoided between US\$20-US\$30; 3) Excluding lime calcining and sinter plant; 4) Excluding SMR Hydrogen production, and Ethylene Oxide Production **Source:** GCCSI (2021), Monitor Deloitte Analysis

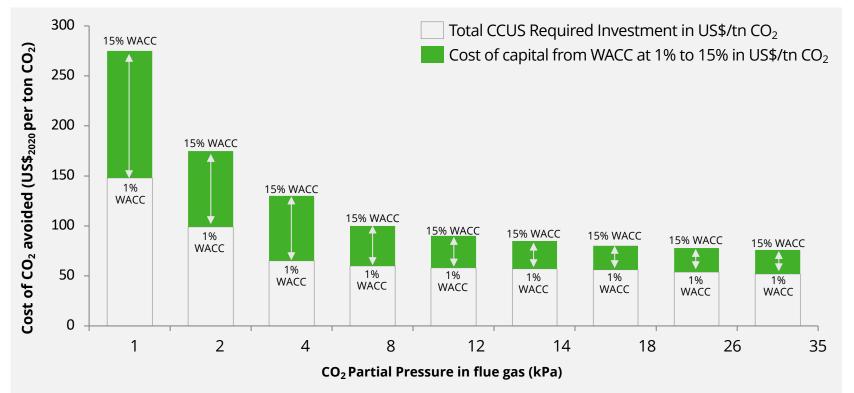

© 2022 Monitor Deloitte. A Deloitte network entity

Reduce technical and financial costs CO₂ capture costs are not only correlated with the CO₂ concentration but also with the quantity of CO₂ captured – higher Qty, lower the cost per ton of CO₂

CCUS Institute modelling of expected capture cost across a range of applications, scales and CO₂ partial pressure

- In applications where the CO₂ partial pressures (PCO₂) is low (e.g., Aluminum smelting) we observe a higher effect of economies of scale (larger range of cost/ton)
- As example, the NGCC technology in a coal-fired power plant (see below picture) that deals with lower PCO₂ has a more vertical cost curve than the SCPC one
- These cost per ton curves are key to understand the minimum Qty of CO₂ captured at which each technology must be set up

Reduce technical and financial costs The CCUS industry is still pursuing cost reduction -- technologically, we observed three avenues: Innovation, Scale and Efficiency

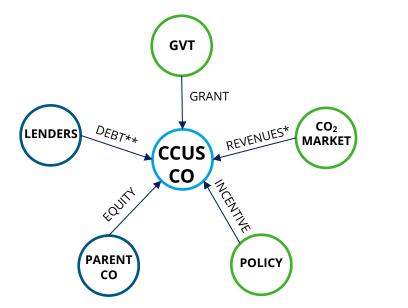

Cost Drivers	Carbon Capture technology	Transport & Storage technology	Cost Reduction Avenues
CO₂ concentration level	Higher the concentration of CO_2 in the gas stream, lower the capture cost		1 Innovation: Keep enhancing with focus <i>'humidification method</i> ' EvGT together with EGR, SFC and EFC (*)
CO ₂ capture technology	Technology costs are related to type of used materials and required processes and equipment		2 Innovation: Keep enhancing the most used Chemical Absorption with Amine and allow equip Modularization
Scale of CO ₂ capture capacity	Higher the capacity of the CCUS plant, lower the costs per ton of captured CO ₂ (especially for dilute sources)	Higher the capacity of the pipeline infrastructure, lower the costs transported CO ₂	3 Scale: Public-Private Partnership allowing clusters setup that will scale up the CO ₂ tons to capture and share transport and storage infrastructure
Cost of energy	CCUS requires significant energy to regenerate CO_2 capture media and to compress CO_2 to very high pressures necessary to achieve a dense phase suitable for transport and geological storage		4 Efficiency: Utilize lower-cost energy supply
Characteristics of geological storage		Lower costs storage resources that are well characterized (requiring less data to collect); that are closer to the CCUS plant (capture facility); that are onshore rather than offshore; that have high injectivity (requiring fewer wells); and for which existing infrastructure may be re-tasked for storage purposes	5 Efficiency: Select CCUS project while assessing its entire value chain

Source: Monitor Deloitte Analysis

(*) (EGR) exhaust gas recirculation, (EvGT) humidification, (SFC) supplementary firing and (EFC) external firing

Reduce technical and financial costs As financial costs matter, the impact of the cost of capital on CCUS projects may be a key deciding factor in the final investment decision

CCUS Institute modelling of expected CO₂ avoided cost across a range of interest rate and CO₂ partial pressure


Note: 30Y lifetime project assumed; WACC refers to Cost of Capital of a project; Cost of CO₂ avoided includes CO₂ cost of Capture, Compression & Dehydration, Transport and Storage **Source:** GCCSI (2021), Monitor Deloitte Analysis

- For low CO₂ partial pressure (PCO₂) in flue gas conditions (1kPa PCO₂ = aluminum smelting), higher the required CAPEX, higher the economies of scale at different levels of cost of capital
- In high PCO₂ conditions (e.g., natural gas processing, fertilizer...) where the CAPEX required is lower, the cost of the capital still seems to play an important role, bringing the overall cost above the breakeven point

Reduce technical and financial costs We observed that the most successful CCUS projects used multiple financing, allowing multiple equity investors to participate in a single CCUS project

Under project finance, the CCUS project can be set up through a standalone company CCUS CO

Financiers and specialist areas of financing

•	0		
FINANCING TYPE OR SOURCE	EXAMPLES OF SPECIALIST AREAS OF FINANCING		
Commercial Banks	Long-term debt Medium-term debt		
Export Credit Agencies	Medium-term debt Political or commercial risk insurance Guarantees Concessional financing		
Multilateral Agencies & Development Financial Institutions	Equity Long-term debt Medium-term debt Political or commercial risk insurance Guarantees Concessional financing		
Developmental Financial Institutions	Equity Long-term debt Medium-term debt Political or commercial risk insurance Guarantees Concessional financing		
Transport & Storage technology Cost Reduction Avenues			
sive so increased output leads to lower av	verage 6 Efficiency: Restructuring projects' cost		

* Revenues may be insufficient to meet some projects' costs. This will have the effect of reducing the amount of debt such projects can raise.

* * Debt payments will use an escrow agent given the nature of the CCUS CO

Cost Drivers	Carbon Capture technology	Transport & Storage technology	Cost Reduction Avenues
Cost of Capital		ntensive so increased output leads to lower average higher the CAPEX required on each captured ton of CO ₂	6 Efficiency : Restructuring projects' cost of capital while scaling up CCUS projects

Source: Monitor Deloitte Analysis © 2022 Monitor Deloitte. A Deloitte network entity

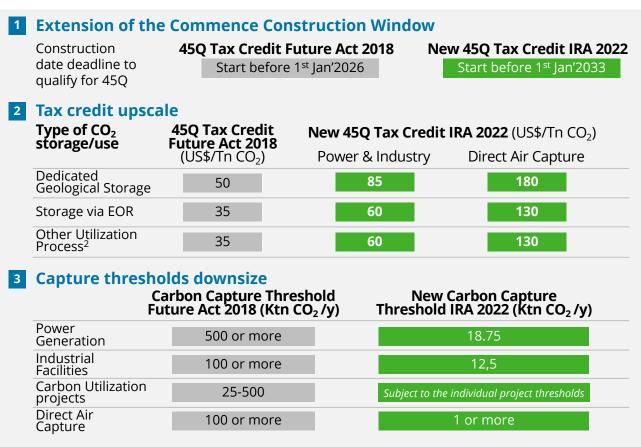
05 Revise regulatory & political support

Drivers of CCUS Public Policy failures		Rationale	Illustration
Tight financing deadlines		A series of CCUS projects have not been able to match the stimulus programs due to spending milestones designed over too short a period	FutureGen project in the United States was awarded up to US\$1b in support with a 5Y spending deadline. The project took 4Y to secure a CO_2 injection permit and missed the deadline. In 2015, the department of energy (DOE) pulled out
External Budget Pressure	₹	Multi-year grant funding schemes have been highly sensitive to external budget pressure	In 2015, the UK Conservative government cancelled a £1b grant for developing new CCUS technology, 6 months before it was due to be awarded
One-off capital grant		The absence of a CCUS framework for investment and one-time capital grants for selected projects limited CCUS projects scaling opportunities	-
Lack of effective communication to local population		Lack of proactive communication on CCUS role for decarbonization and its related CO ₂ storage implications for safety fuel the risk of local public opposition	In 2010, Citizens of the town of Barendrecht showed huge opposition to the sequestration project. After an initial delay in the start date by 3 years to 2013, the project was eventually cancelled by the Dutch Government in 2010

Source: Monitor Deloitte Analysis

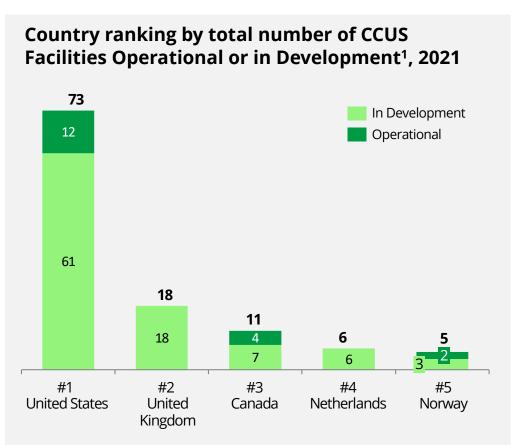
D5 Revise regulatory and political support **Today, the most advanced CCUS industries are in countries where the private sector benefits from solid and ad-hoc CCUS public support**

Policy Impact on CCUS deployment: Medium Medium Limited					
	틪 United States	(🍬) Canada	당 United Kingdom	😄 Netherlands	t Norway
Well known CCUS Development ¹	17 Commercial CCUS facilities Operational	4 Commercial CCUS facilities Operational	2 CCUS Clusters: HyNet, East Coast (incl. 6 CCUS Hubs)	4 CCUS Hubs – (incl. Porthos, Athos, Antwerp, Greensand)	1 CCUS Hub – Langskip
Net-zero CO ₂ policy implementation	Proposed legislation: Net zero by 2050	In law: Net-zero target by 2050	In law: Net-zero target by 2050	In law: Target reduction of 95% GHG by 2050	Target reduction of 90%-95% GHG by 2050
Carbon Tax	No carbon tax	Canada Carbon tax US\$40 ^{3,4}	UK Carbon tax US\$24 ³	Netherlands Carbon Tax US\$46 ^{3,5}	Norway Carbon Tax US\$88 ³
Carbon Tax Credit (ex-ETS)	45Q Tax Credit US\$60-US\$85/tn CO ₂ for 12Y California Low Carbon Fuel Standard (LCFS) US\$68 ² (vs. 1YTD US\$171) for duration of the injection period	Refundable Investment Tax Credit (ITC) at 37.5%-60% for 20Y Alberta Province royalty relief for CO ₂ -EOR			
ETS	California ETS Cap and Trade (CaT) US\$31 ³	Canada ETS US\$40 ³	UK ETS US\$88 ² (vs. 1YTD US\$67)	EU ETS US\$77 ² (vs. 1YTD US\$59)	EU ETS US\$77 ² (vs. 1YTD US\$59)
Public Finance Support (National/ Federal/Regional)	Grant/loan: 2022 DOE US\$7b with ~US5b to drive demonstration and deployment of CCUS; ~US2b for shared carbon transport infra	2022 Energy Innovation Program CA\$319m (i.e. US\$235m) for innovation in CCUS over 7 years 2021 Net Zero Accelerator to provide CA\$3b (i.e. US2,2b) over the next 5 years to fund decarbonization initiatives	2020 UK CCUS Infrastructure Fund (CIF) £1b (i.e. US\$1,2b) to develop 4 CCUS clusters by 2030 capturing 10Mt CO ₂ /y	Grant: 2022 SDE++ Fund provides a 15Y subsidy support covering the cost of CCUS operation above the EU ETS price ⁶	Norway Sleipner and Snohvit CCUS Facilities are operated by Equinor (previously a state- owned company likely to have enabled to borrow at lower rate with a longer-term investment horizon) In 2020, Norway Government funded EUR2,1b to build CCUS facilities at a cement and waste- to-energy power plant


Note: i) Non-exhaustive list of policies per country; ii) Exchange rate as of 26th Oct'22: US\$1 = EUR1; US\$1 = CA\$1,36; US\$1 = £0.86

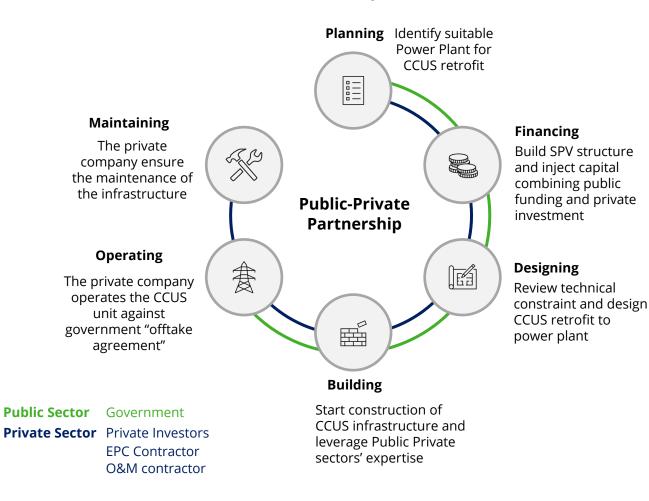
1) CCUS Clusters refers to a series of CCUS Hubs. CCUS Hubs. CCUS Hubs refers to a network linking multiple CCUS projects; 2) As of 25th Oct 2022; 3) As of 01st April 2022; 4) Canada carbon tax will increase from CA\$50/tn CO₂ to CA\$170/tn CO₂ by 2030; 5) Netherlands carbon tax will increase from EUR30/tn CO₂ to EUR125/tn CO₂ by 2030; 6) No new industrial subsidy will be granted after 2035 to reflect CCUS role as a transitionary technology

Source: Energy & Climate Net Zero Tracker; Govt of Netherlands, Govt of Canada, Govt of the United States, California Air Resource Board, Ember Climate, World Bank, GCCSI 2021, Monitor Deloitte Analysis


OS Revise regulatory and political support **US 45Q is tailored around CCUS specifics - this allowed US leadership and with the recent threshold revision we expect a further increase in # of projects**

Updated 45Q provides strong incentives for CCUS deployment in the US¹

1) US45Q was updated following 2022 Inflation Reduction Act. It applies to facilities in service after December 2022; 2) Including fuels, chemicals, products

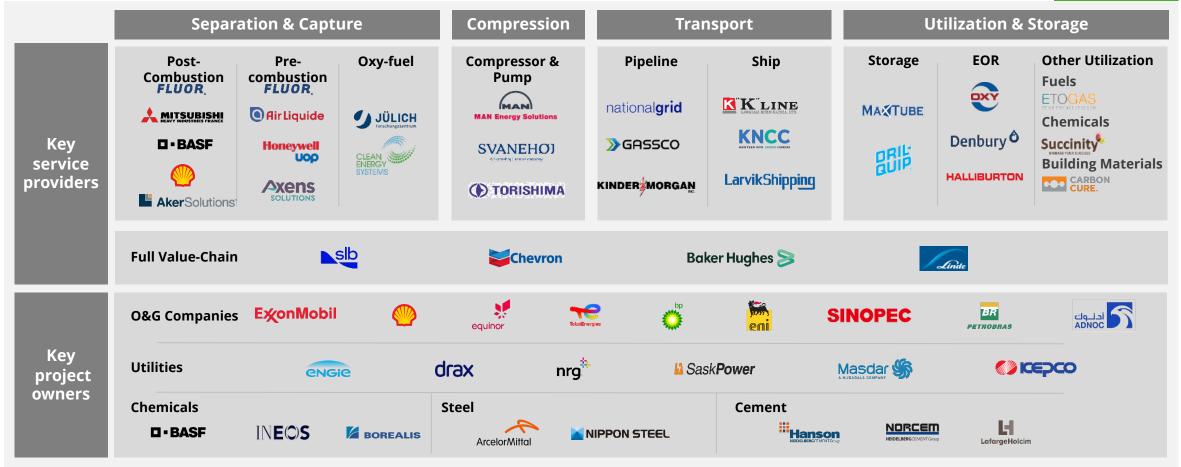

The United States dominates the ranking of the top 5 countries by number of CCUS projects

1) China is excluded from the ranking since Norway total expected capture capacity by 2030 is superior to China and Norway has a historical footprint in the CCUS market

O5 Revise regulatory and political support We learned that public-private partnerships (PPPs) seems to offer strong opportunities for CCUS projects to gain momentum

Illustration of Public-Private-Partnership at a CCUS Power Plant

Key benefits of PPP for CCUS Development


- Decrease the level of risk associated with a general CCUS project by building confidence through government support
- Improve access to capital by reducing lending risk and, consequently, the cost of debt
- Offtake agreement (e.g., a 10Y carbon removal purchase agreement) allows to plan for stable stream of revenues and de-risk the financing
- Complementary funding combining public grants and private investments
- Share knowledge and accelerate the government's learning curve on the potential of CCUS to decarbonize Power, EINT and HR sectors
- Democratize CCUS potential to the local population

16 Expand access to market

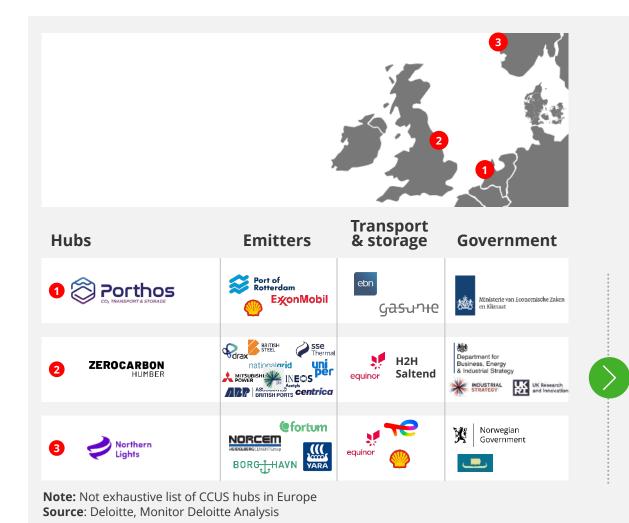
Description of the second access to markets The growing presence of major oil, gas and chemical IOC and OFS companies leads us to believe that the market and technology can only get better

Mapping of CCUS Ecosystem

Illustrative Non-exhaustive

Source: GCCSI, Concawe, Press research, Monitor Deloitte Analysis

Expand access to markets Recently, we have witnessed several positive signals from industry leaders, Governments bodies and investors highlighting CCUS' potential as a viable decarbonation solution


1 United Kingdom Eni entered a bid for a license to store ~330Mt CO₂ in the depleted Hewet gas field sourced Storage from UK's Bacton Eni natural gas import terminals and the industrialized Thames Estuary area License Bid (Sep'22) The UK CCUS infrastructure fund aiming at the deployment of 4 CCUS clusters by 2030, New selected 20 bids in Phase 2 of its Cluster Sequencing Process. Shortlisted bids include Power, investments Industrial and CCUS-enabled hydrogen projects. (Juľ22) **2** Belgium **Cross-border** Belgium and Denmark government agreed that CO₂ captured by INEOS from its plant in Belgium can be shipped via the port of Antwerp to the company's Nini West oil platform 200 agreement km off western Denmark in the North Sea (Oct'22) **Feasibility study** TotalEnergies and Holcim in Belgium signed a Memorandum of Understanding (MoU) to work together on the full decarbonization of a cement production facility in Obourg assessment (Oct'22) **G** Germany Wintershall Dea and Norwegian oil major Equinor announced an agreement to jointly develop Cross-border CCUS infrastructure, including a 900-km pipeline to connect CO₂ collection sites in northern agreement Germany to storage sites offshore Norway (Oct'22) **4** France **Feasibility study** TotalEnergies and Esso explore the feasibility of deploying CO₂ storage infrastructure in North Sea by capturing 3Mtn CO₂ /y by 2030 in Normandy industrial basin assessment (Juľ21) **5** United States Golf Coast -New ExxonMobil will work with EniLink Midstream to transport and store 2Mt CO₂ /y from CF Partnership Industries blue ammonia production complex, driven by favorable economics linked to the Inflation Reduction Act Project (Sep'22) ExxonMobil expressed preliminary interest in taking over Denbury Resources driven by its **M&A** (Oct'22) knowledge in CO₂ for EOR and operating CO₂ pipeline infrastructure in the US Golf Coast

Note: Not exhaustive list of CCUS industry recent developments over 2021-22, excluding APAC **Source:** Press Review Monitor Deloitte Analysis

Expand access to markets CCUS expand in hubs to leverage CO₂ emission clusters and combine expertise, hence mega clusters are a potential solution to bridge the 0,6Gt gap by 2030

Building CO₂ emissions mega clusters


Disclaimer: This analysis assumes no constraint on volume of CO₂ captured and transported, no constraint on storage capacity and no financial barriers. Further study is required to assess technical and financial feasibility.

- The analysis of CCUS facilities expected operational capabilities by 2030 reveals a gap of 0,6Gt of CO₂ to achieve the 0,8Gt CO₂ captured in 2030 in the Sustainable Development Scenario
- CCUS Hubs targeting CO₂ emissions clusters allow to optimize CCUS value chain economics by targeting large volume of CO₂ emissions and sharing expertise across counterparties
- With that prospect in mind, Monitor Deloitte analyzed worldwide CO₂ emissions clusters, potential storage areas, and derived **potential** mega-clusters implementations¹. A mega-cluster refers to a combination of several large, medium or small size CO₂ emissions clusters
- The implementation of CCUS to the **3 identified mega clusters** respectively located in the US Gulf Coast, South-West of Poland and Eastern China could bring total CO₂ emissions captured to ~**365tn** CO₂ /y, or ~**60%** of the additional CO₂ required to be captured in 2030 to reach SDS

1) Assuming no constraint on volume of CO2 captured and transported, no constraint on storage capacity, no financial barriers

Expand access to markets A mega cluster in North America could capture 0,1Gt of CO₂ /y, almost 1/6th of the additional 0,6Gt capture capacity required by 2030

Location of CO₂ emission clusters

- CO₂ Emissions Clusters (estimated in Mt CO₂ /y)
- Saline Aquifers
- Potential Mega Cluster CCUS Implementation
- Ocommercial CCUS Facilities In Development
- Commercial CCUS Facilities Operational
- Existing and Planed CO₂ Pipelines
- <-> New Required CO₂ pipelines
- Commercial CCUS Facility with Enhanced Oil Recovery (EOR) storage

Disclaimer: This analysis is theoretical and requires further study in terms of technical and financial feasibility.

Zoom on Gulf of US Mexico Mega Cluster

US Gulf of Mexico Mega Cluster

The Gulf of Mexico mega cluster combines 1 large CO₂ emissions cluster in Shreveport and 2 medium-size CO₂ emission clusters close to the city of Dallas and Smackover, connected by ~390km of CO₂ pipeline

and reach SDS

~0,1Gt of CO₂ emissions potential to be captured per year

~15% of the required 0,6Gt

EOR storage opportunities by connecting new required pipelines

to existing CO₂ pipelines

additional capture capacity to reach the 0,8Gt capture capacity by 2030

The mega cluster total CO₂ emissions are 122Mt (95% power generation, 3% cement, 1% refining, 1% O&G and ~1% others) with **110Mt** CO₂ potential to be captured at 90% capture rate

Identified Opportunities

EOR storage by building additional ~200km of pipeline to connect to existing infra Store CO_2 in surrounding saline aquifers Achieve synergies of cost and knowledge with neighbored CCUS facilities

2) Prospective aquifer storage capacity requiring further analysis to qualify area size, reservoir thickness and porosity **Source:** ArcGIS Online Open Library, OGCI CCUS HUB Base Case, Monitor Deloitte Analysis

¹⁾ Potential to connect to existing onshore EOR storage or offshore wells in the Gulf Coast

Expand access to markets Another mega cluster in Poland could capture 0,1Gt of CO₂ per year, almost 1/6th of the additional 0,6Gt capture capacity required by 2030

Location of CO₂ emission clusters

- CO₂ Emissions Clusters (estimated in Mt CO₂/y)
 Oil & Gas Fields
- Poland Carpathian hydrocarbon fieldsSaline Aquifers
- - Poland Jurassic and Triassic Formations
 - Potential Mega Cluster CCUS Implementation
 - Commercial CCUS Facilities In Development
 - Commercial CCUS Facilities Operational
- <-> New Required CO₂ pipelines

Disclaimer: This analysis is theoretical and requires further study in terms of technical and financial feasibility.

Zoom on Poand Mesozoic Mega Cluster

Poland Mesozic Mega Cluster

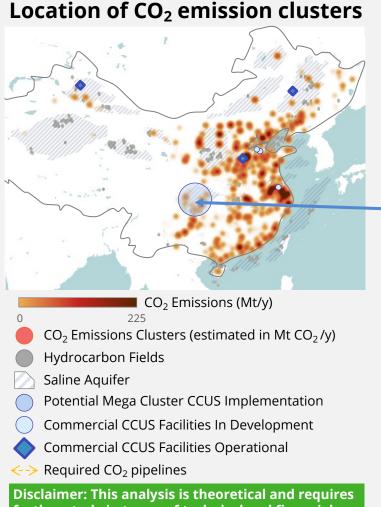
- The Mesozoic mega cluster combines 4 medium size CO₂ emissions cluster in the Polish cities of Piotrkow Trybunalski, Radom, Konin and Opole, connected by ~400km of CO₂ pipelines
- The mega cluster total CO₂ emissions are 83Mt (86% power generation, 10% cement, 3% ammonia, 1% lime and ~1% others), with **74Mt** CO₂ potential to be captured at 90% capture rate

Identified Opportunities

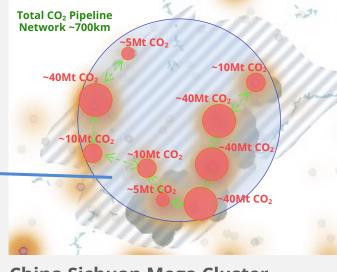
Store CO₂ in surrounding saline aquifers Store CO₂ in nearby Carpathian hydrocarbon fields

Feasibility

4	1
7	2
G	


1) Lower Jurassic and Lower Triassic Formations estimated storage capacity is 44Gt and 8Gt respectively. Research find that these formations are the most adequate sites reservoir in Poland; 2) Carpathian hydrocarbon fields count 12 medium-size depleted/depleting gas fields and 2 small oil fields **Source:** ArcGIS Online Open Library, OGCI CCUS HUB Base Case, EU GeoCapacity, Monitor Deloitte Analysis

~0,1Gt of CO₂ emissions potential to be captured per year


~15% of the required 0,6Gt additional capture capacity to reach the 0,8Gt capture capacity by 2030 and reach SDS

Aquifers storage opportunities in nearby area

Expand access to markets A third mega cluster in China could capture 0,2Gt of CO₂ per year, almost 1/3rd of the additional 0,6Gt capture capacity required by 2030

Zoom on China Sichuan Mega Cluster

~0,2Gt of CO₂ emissions potential to be captured per year

~33% of the required 0,6Gt additional capture capacity to reach the 0,8Gt capture capacity by 2030 and reach SDS

Depleted hydrocarbon fields storage opportunities

- Estimated storage capacity in depleted hydrocarbon fields is ~5,5Gt of CO₂
- 2) EOR storage opportunities mentioned in scientific literature requiring further analysis
- 3) Sichuan Saline Aquifers are of low quality (low porosity and tight characteristics due to their deep burial)
- Abundant boreholes, seismic data and other geological data from O&G Industry started in 1953 in the Sichuan basin

Disclaimer: This analysis is theoretical and requires further study in terms of technical and financial feasibility.

China Sichuan Mega Cluster

- The Sichuan mega cluster combines 4 medium size and 5 small size CO₂ emissions cluster located in the Sichuan Basin, connected by ~700km of CO₂ pipelines
- The mega cluster total CO₂ emissions are ~200Mt (~75% power generation, ~10% Cement, ~10% Iron & Steel, ~4% chemicals and ~1% Others), with ~**180Mt** CO₂ potential to be captured at 90% capture rate

Identified OpportunitiesFeasibilityStore CO_2 in nearby depleted hydrocarbon fields \bigcirc^1 EOR storage in nearby hydrocarbon fields \bigcirc^2 Store CO_2 in surroundings saline aquifer \bigcirc^3 Leverage O&G local knowledge of sites characteristics for CO_2 storage \bigcirc^4

Source: Chinese Academy of Science (CAC), Appraisal of CO₂ storage potential: Case Study in the Sichuan Basin (2020), IEA, Monitor Deloitte Analysis

Conclusions

- CCUS can be instrumental in compensating residual CO₂ emissions that are hard to abate in Energy-Intensive Industries, Power Generation and Refined Hydrocarbons. The overall picture of all types of CCUS projects in 2022 shows that we are off to a running start.
- We see three avenues of improvements to offset the No Business Value of CO₂ abatement: (A) decrease of cost through technology & financing, (B) enhance regulatory and political support and (C) expand access to markets.
- We are still on the path to reduce costs of CCUS. We expect to see benefits from further technology innovations, positive effects of a projects' scale up and efficiencies, and the entrance of major players into the CCUS landscape. Restructuring the cost of capital will offer additional opportunities for cost reduction thanks to the expected scaling up of CCUS projects.
- The most advanced CCUS industries are in countries where the private sector benefits from a tailored CCUS public support. Few recent policy

revisions are encouraging more-effective Public-Private Partnerships (PPP), which provides strong foundations for the CCUS industry to gain momentum, while ensuring investment stability.

- Recently, we have noted several positive signals of confidence in the technology, and of collaboration between industry leaders, governments and investors. We believe that this will drive public acceptance of CO₂ storage, while industry leaders will prioritize offshore storage rather than onshore.
- CCUS expands in hubs to leverage CO₂ emission clusters and combined expertise. We propose that Public-Private Partnerships should focus on mega clusters as a solution to bridge the 0,6Gt CO₂ gap by 2030. We highlighted three mega clusters in North America, Poland and China, which could capture 2/3rd of the additional 0,6Gt capture capacity required by 2030.

08 Deloitte and CCUS

44

, the

O_o

Deloitte and CCUS Deloitte is positioned to lead on CCUS development around the world

The Deloitte CCUS service offering encompasses the entire value chain – from an emitter to a CO₂-disposal & utilization business, as well as important stakeholders, as service companies and regulators

Technology & Innovations

Scan of the technology & innovation landscape to understand readiness levels, opex & capex costs, risk of adaptations and development of fit-for-purpose technical specifications

Policies & Regulations

Analysis of the local regulatory framework and an impact on the CCUS-related activities, including licenses, cross-boarder regulations, emissions reduction regulations etc.

R

Business Models

Market Insights

"window-of-opportunities"

Full-scale financial model to get insights on financial attractiveness of various business models (i.e. operation / owner) as well as on impact of key parameters (i.e. CO₂-price)

Insights on the market potential on sectoral

/ emitter level relevant for CCUS-technology

company as well as CO₂-disposal company

to understand "supply / demand" and

5

Funding & Subsidies

Selection of project specific options with details on the funding / subsidy mechanisms, consideration of eligibility, as well as support in filling and application process

CO₂-accounting & taxation and value creation options

Impact of CO₂-accounting and carbon-taxes on the business case, as well as recommendation of additional value creation options to boost returns of projects

Deloitte and CCUS We have supported the most important CCUS projects...

rthos

Deloitte performed analytical procedures on the financial model of Porthos, including revenue, opex, capex and decommissioning parts for the transport and storage components of the CCUS value chain. Deloitte also analyzed risk profiles to determine appropriate discount rates for project valuation and analysis of value distribution across the chain. The financial model is used to support decisions, commercial agreements, and financing applications.

Technical and commercial feasibility study

Business

models

Market

insights

2	Northern Lights	

Policies

& Regulations

Technology

& innovation

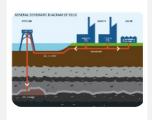
Deloitte supported the Norwegian government's plans to develop a full-scale CCUS value chain in Norway by 2024. Deloitte advised Fortum Oslo Varme throughout the concept study, FEED and piloting of carbon capture from its waste-to-energy facility in Norway, with a focus on business model, procurement strategy, cost control, planning. Deloitte also carried out detailed modelling of uncertainties around capital and operating cost requirements and supported stakeholder negotiations.

Technology

& innovation

CO₂ accounting

& taxation


〔俞〕

Operational & technical due diligence for CCUS project

Carried out an in-depth operational due diligence on P18-A platform analyzing opex and capex costs, maintenance, production profiles and reserves, as well as decommissioning liabilities. The detailed map of key cost drivers, risks and opportunities is used for commercial negotiations, economic forecast scenarios and strategic decisions.

Grants & incentives advisory for CCUS projects

For two CCUS projects in Belgium and The Netherlands, Deloitte conducted an assessment of available grant and subsidy opportunities. After the feasibility has been demonstrated, Deloitte formulated the business plan (including the financial and implementation plans), for Innovation Fund and SDE++ applications, and submitted the required documentation to the relevant regulatory bodies.

Deloitte and CCUS ... across multiple stakeholders and for multiple services

Market model to assess commercial potential for CCUS

Assisted European O&G client with determining the value creation potential and window of commercial opportunity for CCUS in North-West Europe. This involved the development of an integrated source-to-sink market model which captures the key supply and demand drivers, forecasts logistically and commercially accessible CO₂ volumes, and models emitter choices, optimizing on a cost basis. The model supports strategic investment decisions.

Financial advisor to UK Government 💿 🝙 🗠 💿

Market

insights

Department for Business, Energy & Industrial Strategy

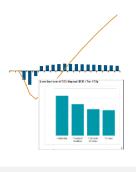
ebn

Policies

& Regulations

Technology

宜


& innovation

Deloitte advised the UK Government's Department of Business, Energy and Industrial Strategy (BEIS) on the £1 billion grant CCUS Commercialisation Programme of 2013-15, aimed at procuring up to two new-build power and CCUS projects. This involved the structuring and drafting of the tender documentation and evaluation of the bids received, providing input on the structuring of a contract for difference to support full chain CCUS projects, and assessing project financing aspects.

Technology

& innovation

Life-of-asset economic model to screen CCUS project options

Supported a multinational O&G client with determining the key value drivers for CCUS projects and mapping the valuerisk distribution and economic benefits across the CCUS value chain. Deloitte developed a life-of-asset economic model and carried out a bottom-up analysis of key cost drivers, potential revenue streams and tariff structures, and quantified impact of subsidies, grants, incentives, carbon pricing, and long-term liabilities on project economics across each segment of the CCUS value chain. The model output was used to screen investment opportunities and optimize decisions in respect to CCUS participation, operating models, and pricing formulae.

Advise on future-proof corporate structure for CCUS projects

Business

models

CO₂ accounting

& taxation

In the context of potential (new) investments in carbon capture and storage and other new businesses in the Netherlands, EBN asked Deloitte to provide an integrated advice on a future-proof corporate structure that best supports these investments. Through interactive workshops with the client's senior management, we have identified and prioritised the possibilities and hurdles from a legal, commercial, financial, governance, tax and audit perspective.

Deloitte and CCUS About the authors

Stefano Ferri Director | Strategy | Energy, Resources and Industrials Monitor Deloitte

6 place de la Pyramide, Paris La Défense, 92908, France D: +33 (0) 155 617 406 | M: +33 7 86 93 83 63 <u>sferri@deloitte.fr</u> | <u>www.deloitte.fr</u> | <u>blog.deloitte.fr</u>

Olivier Perrin Senior Partner | Strategy | Energy, Resources and Industrials Monitor Deloitte

6 place de la Pyramide, Paris La Défense, 92908, France D: +33 (0) 158 370 473 | M: +33 (0) 687 141 738 operrin@deloitte.fr | www.deloitte.fr | blog.deloitte.fr

Stefano Ferri is a director with 25+ year experience in strategy and business transformation with focus on energy. Stefano's areas of expertise include energy transition (wind, biogas, H2, CCUS, EV), digital, capital projects, supply chain, post-merger integration and organization & business transformation.

Olivier Perrin is a senior partner with 25+ years of consulting experience, focused on strategic and operational issues in the Energy and Industrials sectors. He is also the co leader of Deloitte Future of Mobility practice. Olivier's areas of expertise include energy transition, net zero strategy, portfolio management, PMO/PMI and large business transformation.

Acknowledgements

The authors would like to thank **Edouard-Alexandre Van Grembergen** from Deloitte France for his instrumental contribution towards the development of this study.

Monitor **Deloitte**.

About Deloitte

Deloitte refers to one or more of Deloitte Touche Tohmatsu Limited ("DTTL"), its global network of member firms, and their related entities (collectively, the "Deloitte organization"). DTTL (also referred to as "Deloitte Global") and each of its member firms and related entities are legally separate and independent entities, which cannot obligate or bind each other in respect of third parties. DTTL and each DTTL member firm and related entity is liable only for its own acts and omissions, and not those of each other. DTTL does not provide services to clients. Please see www.deloitte.com/about to learn more. In France, Deloitte SAS is the member firm of Deloitte Touche Tohmatsu Limited, and professional services are rendered by its subsidiaries and affiliates.

Deloitte provides industry-leading audit and assurance, tax and legal, consulting, financial advisory, and risk advisory services to nearly 90% of the Fortune Global 500® and thousands of private companies. Our professionals deliver measurable and lasting results that help reinforce public trust in capital markets, enable clients to transform and thrive, and lead the way toward a stronger economy, a more equitable society and a sustainable world. Building on its 175-plus year history, Deloitte spans more than 150 countries and territories. Learn how Deloitte's approximately 415,000 people worldwide make an impact that matters at www.deloitte.com.

Deloitte France brings together diverse expertise to meet the challenges of clients of all sizes from all industries. Backed by the skills of its 7,700 employees and partners and a multidisciplinary offering, Deloitte France is a leading player. Committed to making an impact that matters on our society, Deloitte has set up an ambitious sustainable development and civic commitment action plan.

© 2022 Monitor Deloitte. A Deloitte network entity